L. Mullen, P. Herczfeld, V. Contarino, D. Allocca, M. Squicciarini, R. Billmers
{"title":"Ocean mass simulator for underwater LIDAR applications","authors":"L. Mullen, P. Herczfeld, V. Contarino, D. Allocca, M. Squicciarini, R. Billmers","doi":"10.1109/OCEANS.1993.326121","DOIUrl":null,"url":null,"abstract":"Since microwaves are both reflected and absorbed by water, radar techniques cannot be utilized in the detection of underwater objects. For this situation, light detecting and ranging methods (LIDAR) are used. However, unlike radar, conventional LIDAR systems do not allow for coherent detection techniques which results in a loss in system sensitivity. Therefore, it is proposed that by combining millimeter wave and optical techniques, new coherent detection schemes can be developed. The transmitted optical signal in a LIDAR system is subject to attenuation, distributed backscattering, and dispersion as it propagates through the sea water. Since the goal of the project is to test hybrid microwave-LIDAR signal processing techniques, a simple, inexpensive method is needed to simulate the water medium. The backscattered signal from plastic optical fiber is examined to qualify the fiber as an accurate model of different types of sea water.<<ETX>>","PeriodicalId":130255,"journal":{"name":"Proceedings of OCEANS '93","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of OCEANS '93","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.1993.326121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Since microwaves are both reflected and absorbed by water, radar techniques cannot be utilized in the detection of underwater objects. For this situation, light detecting and ranging methods (LIDAR) are used. However, unlike radar, conventional LIDAR systems do not allow for coherent detection techniques which results in a loss in system sensitivity. Therefore, it is proposed that by combining millimeter wave and optical techniques, new coherent detection schemes can be developed. The transmitted optical signal in a LIDAR system is subject to attenuation, distributed backscattering, and dispersion as it propagates through the sea water. Since the goal of the project is to test hybrid microwave-LIDAR signal processing techniques, a simple, inexpensive method is needed to simulate the water medium. The backscattered signal from plastic optical fiber is examined to qualify the fiber as an accurate model of different types of sea water.<>