A. Saxena, Omar Al Zaabi, R. Shankar, Khaled Ali Al Jaafari, K. Al Hosani, Utkal Ranjan Muduli
{"title":"Functional Resilience Assessment of Restructured Power Grid Considering Insignificant Demands for Frequency Stability","authors":"A. Saxena, Omar Al Zaabi, R. Shankar, Khaled Ali Al Jaafari, K. Al Hosani, Utkal Ranjan Muduli","doi":"10.1109/GlobConHT56829.2023.10087705","DOIUrl":null,"url":null,"abstract":"This paper highlights the demand response (DR) approach as a useful strategy to improve frequency management in a contract violation scenario involving a restructured power network. The analysis is carried out in the DR framework with the integration of the thermal plant, the biogas unit, the solar thermal trough (PTST), and the wind farms. However, an electric vehicle (EV) application is utilized that jointly meets some of the uncontracted demand. A thorough examination of the test system that uses the DR technique greatly enhances the frequency regulation services, which provide a significant improvement over conventional frequency regulation in terms of system dynamics. Sensitivity analysis with a ± 25% variation in system parameters is also taken into account while analyzing system dynamic behavior using the DR framework.","PeriodicalId":355921,"journal":{"name":"2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobConHT56829.2023.10087705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper highlights the demand response (DR) approach as a useful strategy to improve frequency management in a contract violation scenario involving a restructured power network. The analysis is carried out in the DR framework with the integration of the thermal plant, the biogas unit, the solar thermal trough (PTST), and the wind farms. However, an electric vehicle (EV) application is utilized that jointly meets some of the uncontracted demand. A thorough examination of the test system that uses the DR technique greatly enhances the frequency regulation services, which provide a significant improvement over conventional frequency regulation in terms of system dynamics. Sensitivity analysis with a ± 25% variation in system parameters is also taken into account while analyzing system dynamic behavior using the DR framework.