Event-triggered fixed-time adaptive neural control for time-delay nonlinear systems

Peng Wu, Wenhui Liu
{"title":"Event-triggered fixed-time adaptive neural control for time-delay nonlinear systems","authors":"Peng Wu, Wenhui Liu","doi":"10.1109/ISAS59543.2023.10164518","DOIUrl":null,"url":null,"abstract":"This paper investigates the issue of event-triggered fixed-time adaptive neural control for time-delay nonlinear systems. First, the radial basis function neural networks (RBFNNs) are employed to approximate uncertain nonlinearities. Then, the effect of input delay is solved via the Pade approximation method. Moreover, an event-triggered mechanism is incorporated into controller to avoid the over-consumption of network resources. Based on Lyapunov stability theory and the fixed-time command filtering technology, the designed controller can ensure the boundedness of all closed-loop signals, and handle the issue of “explosion of complexity”. Finally, a practical instance is simulated to demonstrate the usefulness of the designed controller.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAS59543.2023.10164518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the issue of event-triggered fixed-time adaptive neural control for time-delay nonlinear systems. First, the radial basis function neural networks (RBFNNs) are employed to approximate uncertain nonlinearities. Then, the effect of input delay is solved via the Pade approximation method. Moreover, an event-triggered mechanism is incorporated into controller to avoid the over-consumption of network resources. Based on Lyapunov stability theory and the fixed-time command filtering technology, the designed controller can ensure the boundedness of all closed-loop signals, and handle the issue of “explosion of complexity”. Finally, a practical instance is simulated to demonstrate the usefulness of the designed controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时滞非线性系统的事件触发定时自适应神经控制
研究了时滞非线性系统的事件触发定时自适应神经控制问题。首先,采用径向基函数神经网络(RBFNNs)逼近不确定非线性。然后,通过Pade逼近法求解输入时延的影响。此外,在控制器中加入了事件触发机制,避免了网络资源的过度消耗。基于李雅普诺夫稳定性理论和定时命令滤波技术,设计的控制器能保证所有闭环信号的有界性,并能处理“复杂度爆炸”问题。最后,通过实例仿真验证了所设计控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new type of video text automatic recognition method and its application in film and television works H∞ state feedback control for fuzzy singular Markovian jump systems with constant time delays and impulsive perturbations MMSTP: Multi-modal Spatiotemporal Feature Fusion Network for Precipitation Prediction Digital twin based bearing fault simulation modeling strategy and display dynamics End-to-End Model-Based Gait Recognition with Matching Module Based on Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1