Graph Neural Networks for Decentralized Multi-Robot Target Tracking

Lifeng Zhou, V. Sharma, Qingbiao Li, A. Prorok, Alejandro Ribeiro, Pratap Tokekar, Vijay R. Kumar
{"title":"Graph Neural Networks for Decentralized Multi-Robot Target Tracking","authors":"Lifeng Zhou, V. Sharma, Qingbiao Li, A. Prorok, Alejandro Ribeiro, Pratap Tokekar, Vijay R. Kumar","doi":"10.1109/SSRR56537.2022.10018712","DOIUrl":null,"url":null,"abstract":"The problem of decentralized multi-robot target tracking asks for jointly selecting actions, e.g., motion primitives, for the robots to maximize target tracking performance with local communications. One major challenge for practical implementations is to make target tracking approaches scalable for large-scale problem instances. In this work, we propose a general-purpose learning architecture towards collaborative target tracking at scale, with decentralized communications. Particularly, our learning architecture leverages a graph neural network (GNN) to capture local interactions of the robots and learns decentralized decision-making for the robots. We train the learning model by imitating an expert solution and implement the resulting model for decentralized action selection involving local observations and communications only. We demonstrate the performance of our GNN-based learning approach in a scenario of active target tracking with large networks of robots. The simulation results show our approach nearly matches the tracking performance of the expert algorithm, and yet runs several orders faster with up to 100 robots. Moreover, it slightly outperforms a decentralized greedy algorithm but runs faster (especially with more than 20 robots). The results also exhibit our approach's generalization capability in previously unseen scenarios, e.g., larger environments and larger networks of robots.","PeriodicalId":272862,"journal":{"name":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR56537.2022.10018712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The problem of decentralized multi-robot target tracking asks for jointly selecting actions, e.g., motion primitives, for the robots to maximize target tracking performance with local communications. One major challenge for practical implementations is to make target tracking approaches scalable for large-scale problem instances. In this work, we propose a general-purpose learning architecture towards collaborative target tracking at scale, with decentralized communications. Particularly, our learning architecture leverages a graph neural network (GNN) to capture local interactions of the robots and learns decentralized decision-making for the robots. We train the learning model by imitating an expert solution and implement the resulting model for decentralized action selection involving local observations and communications only. We demonstrate the performance of our GNN-based learning approach in a scenario of active target tracking with large networks of robots. The simulation results show our approach nearly matches the tracking performance of the expert algorithm, and yet runs several orders faster with up to 100 robots. Moreover, it slightly outperforms a decentralized greedy algorithm but runs faster (especially with more than 20 robots). The results also exhibit our approach's generalization capability in previously unseen scenarios, e.g., larger environments and larger networks of robots.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式多机器人目标跟踪的图神经网络
分散多机器人目标跟踪问题要求机器人在局部通信条件下,共同选择运动原语等动作,使目标跟踪性能最大化。实际实现的一个主要挑战是使目标跟踪方法对大规模问题实例具有可伸缩性。在这项工作中,我们提出了一种通用的学习架构,用于大规模的协作目标跟踪,具有分散的通信。特别是,我们的学习架构利用图神经网络(GNN)来捕获机器人的局部交互,并学习机器人的分散决策。我们通过模仿专家解决方案来训练学习模型,并将结果模型用于只涉及局部观察和通信的分散行动选择。我们在大型机器人网络的主动目标跟踪场景中展示了基于gnn的学习方法的性能。仿真结果表明,我们的方法几乎与专家算法的跟踪性能相匹配,并且在多达100个机器人的情况下运行速度快了几个数量级。此外,它略优于去中心化贪婪算法,但运行速度更快(特别是在超过20个机器人的情况下)。结果还显示了我们的方法在以前看不见的场景中的泛化能力,例如,更大的环境和更大的机器人网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Human Navigation Using Wearable Multiple Laser Projection Suit An innovative pick-up and transport robot system for casualty evacuation DynaBARN: Benchmarking Metric Ground Navigation in Dynamic Environments Multi-Robot System for Autonomous Cooperative Counter-UAS Missions: Design, Integration, and Field Testing Autonomous Robotic Map Refinement for Targeted Resolution and Local Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1