Using program and user information to improve file prediction performance

Tsozen Yeh, D. Long, S. Brandt
{"title":"Using program and user information to improve file prediction performance","authors":"Tsozen Yeh, D. Long, S. Brandt","doi":"10.1109/ISPASS.2001.990685","DOIUrl":null,"url":null,"abstract":"Correct prediction of file accesses can improve system pe formance by mitigating the relative speed difference between CPU and disks. This paper discusses Program-based Last Successor (PLS) and presents Program- and Userbased Lust Successor (PULS), file prediction algorithms that utilize information about the program and user that access the jles. Our simulation results show that PLS makes 21% fewer incorrect predictions and PULS makes 24% fewer incorrect predictions than last-successor with roughly the same number of correct predictions that lastsuccessor makes. The cache space wasted on incorrectpredictions can be reduced accordingly. We also show that a cache using the Least Recently Used (LRU) caching algorithm can perform better when the PULS is applied. In some cases, a cache using LRU and either PLS or PULS performs better than a cache up to 40 times larger using LRU alone.","PeriodicalId":104148,"journal":{"name":"2001 IEEE International Symposium on Performance Analysis of Systems and Software. ISPASS.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE International Symposium on Performance Analysis of Systems and Software. ISPASS.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2001.990685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Correct prediction of file accesses can improve system pe formance by mitigating the relative speed difference between CPU and disks. This paper discusses Program-based Last Successor (PLS) and presents Program- and Userbased Lust Successor (PULS), file prediction algorithms that utilize information about the program and user that access the jles. Our simulation results show that PLS makes 21% fewer incorrect predictions and PULS makes 24% fewer incorrect predictions than last-successor with roughly the same number of correct predictions that lastsuccessor makes. The cache space wasted on incorrectpredictions can be reduced accordingly. We also show that a cache using the Least Recently Used (LRU) caching algorithm can perform better when the PULS is applied. In some cases, a cache using LRU and either PLS or PULS performs better than a cache up to 40 times larger using LRU alone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用程序和用户信息提高文件预测性能
正确预测文件访问可以通过减小CPU和磁盘之间的相对速度差异来提高系统性能。本文讨论了基于程序的最后继承者(PLS),并介绍了基于程序和基于用户的最后继承者(PULS),利用访问文件的程序和用户信息的文件预测算法。我们的模拟结果表明,PLS比last-successor少做出21%的错误预测,而PULS比last-successor少做出24%的错误预测,其正确预测的数量与last-successor大致相同。在错误预测上浪费的缓存空间可以相应减少。我们还表明,当应用PULS时,使用最近最少使用(LRU)缓存算法的缓存可以执行得更好。在某些情况下,使用LRU和PLS或PULS的缓存比仅使用LRU的缓存大40倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding control flow transfer and its predictability in java processing Workload characterization of multithreaded java servers Using program and user information to improve file prediction performance An evaluation of the POSIX trace standard implemented in RT-linux The effects of context switching on branch predictor performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1