The Maple Syrup Problem: The Normal-Normal Conjugate

T. Donovan, R. Mickey
{"title":"The Maple Syrup Problem: The Normal-Normal Conjugate","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0012","DOIUrl":null,"url":null,"abstract":"In this chapter, Bayesian methods are used to estimate the two parameters that identify a normal distribution, μ‎ and σ‎. Many Bayesian analyses consider alternative parameter values as hypotheses. The prior distribution for an unknown parameter can be represented by a continuous probability density function when the number of hypotheses is infinite. In the “Maple Syrup Problem,” a normal distribution is used as the prior distribution of μ‎, the mean number of millions of gallons of maple syrup produced in Vermont in a year. The amount of syrup produced in multiple years is determined, and assumed to follow a normal distribution with known σ‎. The prior distribution is updated to the posterior distribution in light of this new information. In short, a normal prior distribution + normally distributed data → normal posterior distribution.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter, Bayesian methods are used to estimate the two parameters that identify a normal distribution, μ‎ and σ‎. Many Bayesian analyses consider alternative parameter values as hypotheses. The prior distribution for an unknown parameter can be represented by a continuous probability density function when the number of hypotheses is infinite. In the “Maple Syrup Problem,” a normal distribution is used as the prior distribution of μ‎, the mean number of millions of gallons of maple syrup produced in Vermont in a year. The amount of syrup produced in multiple years is determined, and assumed to follow a normal distribution with known σ‎. The prior distribution is updated to the posterior distribution in light of this new information. In short, a normal prior distribution + normally distributed data → normal posterior distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
枫糖浆问题:正常-正常共轭
在本章中,我们使用贝叶斯方法来估计标识正态分布的两个参数,μ和σ。许多贝叶斯分析将可选参数值作为假设。当假设数目为无穷大时,未知参数的先验分布可以用连续概率密度函数表示。在“枫糖浆问题”中,正态分布被用作μ的先验分布,μ是佛蒙特州每年生产的数百万加仑枫糖浆的平均数量。确定多年生产的糖浆量,并假设遵循已知σ _()的正态分布。根据这些新信息,先验分布被更新为后验分布。简而言之,正态先验分布+正态数据分布→正态后验分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Maple Syrup Problem: The Normal-Normal Conjugate Probability Mass Functions Bayes’ Theorem The White House Problem: The Beta-Binomial Conjugate Bayesian Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1