Bayes’ Theorem

Therese M. Donovan, R. Mickey
{"title":"Bayes’ Theorem","authors":"Therese M. Donovan, R. Mickey","doi":"10.1093/oso/9780198841296.003.0003","DOIUrl":null,"url":null,"abstract":"This chapter focuses on Bayes’ Theorem. The chapter first gives a brief introduction to Thomas Bayes, who first formulated the theorem. It then builds on the content presented in Chapters 1 and 2 to derive Bayes’ Theorem and describes two ways to think about it. First, Bayes’ Theorem describes the relationship between two inverse conditional probabilities, P(A | B) and P(B | A). Second, Bayes’ Theorem can be used to express how a degree of belief for a given hypothesis can be updated in light of new evidence. This chapter focuses on the first interpretation. The chapter also discusses the concepts of joint probability and marginal probability.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841296.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter focuses on Bayes’ Theorem. The chapter first gives a brief introduction to Thomas Bayes, who first formulated the theorem. It then builds on the content presented in Chapters 1 and 2 to derive Bayes’ Theorem and describes two ways to think about it. First, Bayes’ Theorem describes the relationship between two inverse conditional probabilities, P(A | B) and P(B | A). Second, Bayes’ Theorem can be used to express how a degree of belief for a given hypothesis can be updated in light of new evidence. This chapter focuses on the first interpretation. The chapter also discusses the concepts of joint probability and marginal probability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本章主要讨论贝叶斯定理。本章首先简要介绍了托马斯·贝叶斯,他是第一个提出这个定理的人。然后在第一章和第二章的基础上推导出贝叶斯定理,并描述了思考贝叶斯定理的两种方法。首先,贝叶斯定理描述了两个逆条件概率P(A | B)和P(B | A)之间的关系。其次,贝叶斯定理可以用来表达给定假设的相信程度如何根据新的证据进行更新。本章主要讨论第一种解释。本章还讨论了联合概率和边际概率的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Maple Syrup Problem: The Normal-Normal Conjugate Probability Mass Functions Bayes’ Theorem The White House Problem: The Beta-Binomial Conjugate Bayesian Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1