{"title":"Multi-source energy mixing by time rate multiple PWM for microgrids","authors":"Cemal Keleş, A. Kaygusuz, B. Alagoz","doi":"10.1109/SGCF.2016.7492416","DOIUrl":null,"url":null,"abstract":"Smart grid applications aims to employ many optimization and artificial intelligence methods for optimal energy management. Results of these algorithms need to be implemented by power systems in practice. This study presents Time Rate Multiple Pulse Width Modulation (TRM-PWM) methods for multi-source energy mixing for DC microgrids, which is integrating several renewable energy resources. In the paper, we implement TRM-PWM multi-source energy mixer component for integration of energy flow coming from solar and wind energy systems, battery system and grid in MATLAB simulink. Simulation results show that proposed energy mixer component can adjust rate of energy mixing from different sources. By using this component, optimal energy mixing, which can be adjusted by optimization and artificial intelligence methods, can be realized in smart grid applications.","PeriodicalId":403426,"journal":{"name":"2016 4th International Istanbul Smart Grid Congress and Fair (ICSG)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Istanbul Smart Grid Congress and Fair (ICSG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGCF.2016.7492416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Smart grid applications aims to employ many optimization and artificial intelligence methods for optimal energy management. Results of these algorithms need to be implemented by power systems in practice. This study presents Time Rate Multiple Pulse Width Modulation (TRM-PWM) methods for multi-source energy mixing for DC microgrids, which is integrating several renewable energy resources. In the paper, we implement TRM-PWM multi-source energy mixer component for integration of energy flow coming from solar and wind energy systems, battery system and grid in MATLAB simulink. Simulation results show that proposed energy mixer component can adjust rate of energy mixing from different sources. By using this component, optimal energy mixing, which can be adjusted by optimization and artificial intelligence methods, can be realized in smart grid applications.