Adaptive vector quantization with a structural level adaptable neural network

T. Lee, A. Peterson
{"title":"Adaptive vector quantization with a structural level adaptable neural network","authors":"T. Lee, A. Peterson","doi":"10.1109/PACRIM.1989.48415","DOIUrl":null,"url":null,"abstract":"A new type of adaptive vector quantizer is proposed. The core of this system is a self-development neural network constituting the codebook of the vector quantizer. Each neuron in the network memorizes a codeword of the active codebook in its input interconnection weight vector. The codebook is constantly evolving with time to reflect the statistical fluctuation of the source signals. The dynamics of the codebook is characterized by neuron generation, neuron weight vector adjustment, and neuron annihilation processes of the network. The quantization residue of the neural network quantizer is fed to a fixed structure lattice vector quantizer, and the quantized residue is used to stimulate the evolution process of the neural network codebooks inside both the transmitter and the receiver.<<ETX>>","PeriodicalId":256287,"journal":{"name":"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1989.48415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new type of adaptive vector quantizer is proposed. The core of this system is a self-development neural network constituting the codebook of the vector quantizer. Each neuron in the network memorizes a codeword of the active codebook in its input interconnection weight vector. The codebook is constantly evolving with time to reflect the statistical fluctuation of the source signals. The dynamics of the codebook is characterized by neuron generation, neuron weight vector adjustment, and neuron annihilation processes of the network. The quantization residue of the neural network quantizer is fed to a fixed structure lattice vector quantizer, and the quantized residue is used to stimulate the evolution process of the neural network codebooks inside both the transmitter and the receiver.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构级自适应神经网络的自适应矢量量化
提出了一种新的自适应矢量量化器。该系统的核心是一个自行开发的神经网络,构成矢量量化器的码本。网络中的每个神经元在其输入互连权向量中存储活动码本的一个码字。码本随时间不断演化,以反映源信号的统计波动。码本的动态特征是神经元生成、神经元权向量调整和网络的神经元湮灭过程。将神经网络量化器的量化残差馈送到固定结构的点阵矢量量化器中,利用量化残差分别在发送端和接收端内部刺激神经网络码本的演化过程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of transport layer and LLC sublayer performance within a local area network Applications of systolic array architectures to motion analysis studies ELsim: a timing simulator for digital CMOS integrated circuits On the performance of the MLE of adaptive array weights: a comparison Application of digital filters in power systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1