Using Machine Learning Algorithms in Medication for Cardiac Arrest Early Warning System Construction and Forecasting

Hsiao-ko Chang, Cheng-Tse Wu, Ji-Han Liu, J. Jang
{"title":"Using Machine Learning Algorithms in Medication for Cardiac Arrest Early Warning System Construction and Forecasting","authors":"Hsiao-ko Chang, Cheng-Tse Wu, Ji-Han Liu, J. Jang","doi":"10.1109/TAAI.2018.00010","DOIUrl":null,"url":null,"abstract":"Target-In this paper, we focus on using medicine for patients who have cardiac arrest then must have to do Cardiopulmonary Resuscitation (CPR). We want to know the medicine influence in predicting state of an illness deterioration. Therefore, we proposes a Medication for Cardiac Arrest Early Warning System (MCAEWS). It's not only assist physicians to early diagnose of an illness and immediately warning, but also increase sensitivity, decrease false positive rate and mortality rate. The most important role is greatly improve medical quality. Methods-In this study, the data is from the emergency department of National Taiwan University Hospital (NTUH). It is from January 2014 to December 2015. The patients who stayed in the emergency detention area for more than six hours during this two years. The patients were included in the retrospective cohort study. To comparative measures for the machine learning models, we used such as the Area Under the Receiver Operating Characteristic Curve (AUROC) and the Area under the Precision-Recall Curve (AUPRC). Results-The data were analyzed for CPR and non-CPR groups respectively. Furthermore, we evaluated sensitivity and specificity. The Random Forest Algorithm (AUC: 0.98; AUP: 0.23) compare with others such as Logistic Regression Algorithm (AUC: 0.94; AUP: 0.13), Decision Tree (AUC: 0.97; AUP: 0.05), and Extreme Random Tree (AUC: 0.91; AUP: 0.08), it was significantly high performance. Conclusion-Increasing the drug factors in vital signs, that it effectively improved the accuracy of predicting cardiac arrest. The results of this study, it's help for emergency clinical Physicians and hospital quality management will validly solve clinical medical resource allocation issues and improve medical quality through decision support systems.","PeriodicalId":211734,"journal":{"name":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2018.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Target-In this paper, we focus on using medicine for patients who have cardiac arrest then must have to do Cardiopulmonary Resuscitation (CPR). We want to know the medicine influence in predicting state of an illness deterioration. Therefore, we proposes a Medication for Cardiac Arrest Early Warning System (MCAEWS). It's not only assist physicians to early diagnose of an illness and immediately warning, but also increase sensitivity, decrease false positive rate and mortality rate. The most important role is greatly improve medical quality. Methods-In this study, the data is from the emergency department of National Taiwan University Hospital (NTUH). It is from January 2014 to December 2015. The patients who stayed in the emergency detention area for more than six hours during this two years. The patients were included in the retrospective cohort study. To comparative measures for the machine learning models, we used such as the Area Under the Receiver Operating Characteristic Curve (AUROC) and the Area under the Precision-Recall Curve (AUPRC). Results-The data were analyzed for CPR and non-CPR groups respectively. Furthermore, we evaluated sensitivity and specificity. The Random Forest Algorithm (AUC: 0.98; AUP: 0.23) compare with others such as Logistic Regression Algorithm (AUC: 0.94; AUP: 0.13), Decision Tree (AUC: 0.97; AUP: 0.05), and Extreme Random Tree (AUC: 0.91; AUP: 0.08), it was significantly high performance. Conclusion-Increasing the drug factors in vital signs, that it effectively improved the accuracy of predicting cardiac arrest. The results of this study, it's help for emergency clinical Physicians and hospital quality management will validly solve clinical medical resource allocation issues and improve medical quality through decision support systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习算法在心脏骤停用药预警系统构建与预测中的应用
目的:在本文中,我们着重于使用药物的病人谁有心脏骤停,然后必须做心肺复苏(CPR)。我们想知道药物对预测疾病恶化状态的影响。因此,我们提出了一个心脏骤停药物预警系统(MCAEWS)。它不仅可以帮助医生早期诊断疾病并及时预警,而且可以提高灵敏度,降低假阳性率和死亡率。最重要的作用是大大提高医疗质量。方法:本研究资料来自国立台湾大学附属医院急诊科。从2014年1月到2015年12月。两年内在紧急拘留区停留超过6小时的患者。这些患者被纳入回顾性队列研究。为了比较机器学习模型的度量,我们使用了诸如Receiver Operating Characteristic Curve (AUROC)和Precision-Recall Curve (AUPRC)下的面积。结果:分别对心肺复苏术组和非心肺复苏术组进行数据分析。此外,我们评估了敏感性和特异性。随机森林算法(AUC: 0.98;AUC: 0.94)与Logistic回归算法(AUC: 0.94;AUP: 0.13),决策树(AUC: 0.97;AUP: 0.05),极端随机树(AUC: 0.91;AUP: 0.08),表现为显著的高性能。结论:增加生命体征中的药物因素,可有效提高心脏骤停预测的准确性。本研究结果有助于急诊临床医师和医院质量管理,通过决策支持系统有效解决临床医疗资源配置问题,提高医疗质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ant Colony Optimization with Negative Feedback for Solving Constraint Satisfaction Problems Using Machine Learning Algorithms in Medication for Cardiac Arrest Early Warning System Construction and Forecasting Using AHP to Choose the Best Logistics Distribution Model A Vector Mosquitoes Classification System Based on Edge Computing and Deep Learning Deep Recurrent Q-Network with Truncated History
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1