Learning probabilities for causal networks

Y. Peng
{"title":"Learning probabilities for causal networks","authors":"Y. Peng","doi":"10.1109/IJCNN.1992.227283","DOIUrl":null,"url":null,"abstract":"The author presents an unsupervised method to learn probabilities of random events. Learning is done by letting variables adaptively respond to positive and negative environmental stimuli. The basic learning rule is applied to learn prior and conditional probabilities for causal networks. By combining with a stochastic factor, this method is extended to learn probabilities of hidden causations, a type of event important in modeling causal relationships. In contrast to many existing neural network learning paradigms, probabilistic knowledge learned by this method is independent of any particular type of task. This method is especially suited for acquiring and updating knowledge in systems based on traditional artificial intelligence representation techniques.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"521 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The author presents an unsupervised method to learn probabilities of random events. Learning is done by letting variables adaptively respond to positive and negative environmental stimuli. The basic learning rule is applied to learn prior and conditional probabilities for causal networks. By combining with a stochastic factor, this method is extended to learn probabilities of hidden causations, a type of event important in modeling causal relationships. In contrast to many existing neural network learning paradigms, probabilistic knowledge learned by this method is independent of any particular type of task. This method is especially suited for acquiring and updating knowledge in systems based on traditional artificial intelligence representation techniques.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习因果网络的概率
提出了一种学习随机事件概率的无监督方法。学习是通过让变量对积极和消极的环境刺激做出适应性反应来完成的。将基本学习规则应用于因果网络的先验概率和条件概率的学习。通过结合随机因素,将该方法扩展到学习隐藏原因的概率,这是一种对因果关系建模很重要的事件。与许多现有的神经网络学习范式相比,通过这种方法学习的概率知识与任何特定类型的任务无关。该方法特别适用于基于传统人工智能表示技术的系统中知识的获取和更新
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1