Unobtrusive anomaly detection in presence of elderly in a smart-home environment

M. Novák, M. Binas, F. Jakab
{"title":"Unobtrusive anomaly detection in presence of elderly in a smart-home environment","authors":"M. Novák, M. Binas, F. Jakab","doi":"10.1109/ELEKTRO.2012.6225617","DOIUrl":null,"url":null,"abstract":"In the paper we present a method for anomaly detection in user's activities utilizing data from unobtrusive sensors. A service for a smart-home environment using this method adapts to behaviour of a user and may provide alarms to a carer or other responsible person if unusual activity is detected. As an unusual activity we consider: long periods of inactivity, lacking activity, unusual presence and changes in daily activity patterns. Anomaly detection is based on a composition of unsupervised classification technique Self Organizing Maps and next activity prediction employing Markov model. Finally we present a short experimental study realized on a dataset provided by MavHome project.","PeriodicalId":343071,"journal":{"name":"2012 ELEKTRO","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ELEKTRO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELEKTRO.2012.6225617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

In the paper we present a method for anomaly detection in user's activities utilizing data from unobtrusive sensors. A service for a smart-home environment using this method adapts to behaviour of a user and may provide alarms to a carer or other responsible person if unusual activity is detected. As an unusual activity we consider: long periods of inactivity, lacking activity, unusual presence and changes in daily activity patterns. Anomaly detection is based on a composition of unsupervised classification technique Self Organizing Maps and next activity prediction employing Markov model. Finally we present a short experimental study realized on a dataset provided by MavHome project.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在智能家居环境中对老年人进行不显眼的异常检测
在本文中,我们提出了一种方法来异常检测用户的活动利用数据从不引人注目的传感器。使用这种方法的智能家居环境服务可以适应用户的行为,如果检测到异常活动,可以向护理人员或其他负责人发出警报。作为一种不寻常的活动,我们认为:长时间不活动,缺乏活动,不寻常的存在和日常活动模式的变化。异常检测是基于无监督分类技术自组织映射和马尔可夫模型下一个活动预测的组合。最后,我们在MavHome项目提供的数据集上实现了一个简短的实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum transmittable data rates for Millimeter-wave fixed wireless links Propagation models for WiMAX at 3.5 GHz Impact of selected parameters on eddy current attenuation in conductive materials Determination of rail steel's phase composition by means of X-ray diffraction analysis Multiparameter symbolic sensitivity analysis of active circuits by using nullor model and modified Coates flow graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1