Accurate Analytical Switching Loss Model for High Voltage SiC MOSFETs Includes Parasitics and Body Diode Reverse Recovery Effects

Soheila Eskandari, Kang Peng, Bo Tian, E. Santi
{"title":"Accurate Analytical Switching Loss Model for High Voltage SiC MOSFETs Includes Parasitics and Body Diode Reverse Recovery Effects","authors":"Soheila Eskandari, Kang Peng, Bo Tian, E. Santi","doi":"10.1109/ECCE.2018.8557515","DOIUrl":null,"url":null,"abstract":"In the quest for higher power density in switching converters, the use of SiC MOSFETs provides increased switching speed, which allows higher switching frequencies and smaller filtering elements. In order to accurately estimate switching losses in these fast high-voltage devices, a detailed analytical loss model considering parasitic effects and parasitic elements is required. In this paper, a simple and accurate analytical loss model is presented which considers the device junction capacitances, parasitic inductances and reverse recovery of the high voltage SiC MOSFET body diode. The reverse recovery time is calculated and used in the model. The proposed model provides easy-to-use closed-form mathematical equations and gives insight into the switching process and the parameters that affect it. Analytical equations are validated by experimental results.","PeriodicalId":415217,"journal":{"name":"2018 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2018.8557515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In the quest for higher power density in switching converters, the use of SiC MOSFETs provides increased switching speed, which allows higher switching frequencies and smaller filtering elements. In order to accurately estimate switching losses in these fast high-voltage devices, a detailed analytical loss model considering parasitic effects and parasitic elements is required. In this paper, a simple and accurate analytical loss model is presented which considers the device junction capacitances, parasitic inductances and reverse recovery of the high voltage SiC MOSFET body diode. The reverse recovery time is calculated and used in the model. The proposed model provides easy-to-use closed-form mathematical equations and gives insight into the switching process and the parameters that affect it. Analytical equations are validated by experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高电压SiC mosfet的精确解析开关损耗模型包括寄生效应和体二极管反向恢复效应
为了在开关转换器中追求更高的功率密度,使用SiC mosfet提供了更高的开关速度,从而允许更高的开关频率和更小的滤波元件。为了准确估计这些快速高压器件的开关损耗,需要一个详细的考虑寄生效应和寄生元件的分析损耗模型。本文在考虑器件结电容、寄生电感和高压SiC MOSFET体二极管反向恢复等因素的基础上,提出了一种简单、准确的分析损耗模型。计算了反向恢复时间,并将其用于模型中。所提出的模型提供了易于使用的封闭形式的数学方程,并提供了深入了解开关过程和影响它的参数。实验结果验证了解析方程的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Control Schemes for Reducing the Second Harmonic Current in Two-Stage Single-Phase Converter: An Overview from DC-Bus Port-Impedance Characterization Minimizing Reactive Current of a High Gain Dual Active Bridge Converter for Supercapacitor Based Energy Storage System Integration High Frequency Small Signal Model for Inverse Charge Constant On-Time (IQCOT) Control Airgap Search Coil-Based Detection of Damper Bar Failures in Salient Pole Synchronous Motors On-line Compensation of Periodic Error in Resolver Signals for PMSM Drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1