Classification of Diabetic Retinopathy using Statistical Region Merging and Convolutional Neural Network

Chintya Dewi Regina Wulandari, S. Wibowo, L. Novamizanti
{"title":"Classification of Diabetic Retinopathy using Statistical Region Merging and Convolutional Neural Network","authors":"Chintya Dewi Regina Wulandari, S. Wibowo, L. Novamizanti","doi":"10.1109/APWiMob48441.2019.8964207","DOIUrl":null,"url":null,"abstract":"Diabetes Retinopathy is one of the complications of Diabetes Mellitus, which occurs in the retina of the eye. Patients will experience vision problems and if it handled late, patients will experience blindness. Manual examination by an ophthalmologist will take time and the results of the examination also depend on the doctor's expertise in diagnosing. Therefore, digital image processing system which able diagnose quickly, accurately, and objectively, is needed. Based on these problems, in this research the author designed a system that can process digital fundus images and classify them into 4 classes namely normal, mild NPDR, moderate NPDR, and severe NPDR by using data taken from MESSIDOR dataset. The data is processed using Statistical Region Merging (SRM) segmentation method and is classified using the Convolutional Neural Network (CNN) method. The number of data samples used in this research is 80 images, which consist of 20 image samples for each class. The best accuracy achieved was 81.25% using a ratio of 3:2 training data and test data, the value of segmentation complexity parameters $\\mathrm{Q}={256}$, the number of $\\mathrm{epochs}={100}$ and the learning rate $\\mathrm{e}={0.0001}$, with 14.518 seconds of computation time.","PeriodicalId":286003,"journal":{"name":"2019 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWiMob48441.2019.8964207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Diabetes Retinopathy is one of the complications of Diabetes Mellitus, which occurs in the retina of the eye. Patients will experience vision problems and if it handled late, patients will experience blindness. Manual examination by an ophthalmologist will take time and the results of the examination also depend on the doctor's expertise in diagnosing. Therefore, digital image processing system which able diagnose quickly, accurately, and objectively, is needed. Based on these problems, in this research the author designed a system that can process digital fundus images and classify them into 4 classes namely normal, mild NPDR, moderate NPDR, and severe NPDR by using data taken from MESSIDOR dataset. The data is processed using Statistical Region Merging (SRM) segmentation method and is classified using the Convolutional Neural Network (CNN) method. The number of data samples used in this research is 80 images, which consist of 20 image samples for each class. The best accuracy achieved was 81.25% using a ratio of 3:2 training data and test data, the value of segmentation complexity parameters $\mathrm{Q}={256}$, the number of $\mathrm{epochs}={100}$ and the learning rate $\mathrm{e}={0.0001}$, with 14.518 seconds of computation time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于统计区域合并和卷积神经网络的糖尿病视网膜病变分类
糖尿病视网膜病变是糖尿病的并发症之一,发生在眼睛视网膜。患者会出现视力问题,如果治疗晚了,患者会失明。由眼科医生手工检查需要时间,检查结果也取决于医生的诊断专业知识。因此,需要能够快速、准确、客观地进行诊断的数字图像处理系统。基于这些问题,本文设计了一个系统,利用MESSIDOR数据集的数据,对数字眼底图像进行处理,并将其分为正常、轻度NPDR、中度NPDR和重度NPDR 4类。使用统计区域合并(SRM)分割方法对数据进行处理,并使用卷积神经网络(CNN)方法对数据进行分类。本研究使用的数据样本数量为80张图像,每一类包含20张图像样本。当训练数据与测试数据的比例为3:2,分割复杂度参数$\mathrm{Q}={256}$,个数$\mathrm{epoch}={100}$,学习率$\mathrm{e}={0.0001}$时,准确率达到81.25%,计算时间为14.518秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Performance Analysis of Multilayer On-Chip Band Pass Filter for RF Circuits Classification of Diabetic Retinopathy using Statistical Region Merging and Convolutional Neural Network Integration of Digital Modulation and Power Amplifier Using Switching Power Converter Development of IoT Server on Electricity Mapping System Performance Analysis of Radio over Fiber Network for Indoor Telecommunication Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1