{"title":"The serverkernel operating system","authors":"Jon Larrea, A. Barbalace","doi":"10.1145/3378679.3394537","DOIUrl":null,"url":null,"abstract":"With the idea of exploiting all the computational resources that an IoT environment with multiple interconnected devices offers, serverkernel is presented as a new operating system architecture that blends ideas from distributed operating systems, Unikernel, and LWK. These concepts are mixed with a server in which a user can remotely offload computations and get the result. This single space-address operating system (OS) can be interpreted as a bare-metal OS in which only drivers for CPU, network, and accelerators are required in order to provide service. To demonstrate the advantages of serverkernel, jonOS, an open-source C implementation of this architecture for Raspberry Pi, is provided. Compared with commercial architectures used in IoT devices, serverkernel achieves an improvement ratio of 1.5 in CPU time, 2.5 in real-time, and around 9 times better in network speed.","PeriodicalId":268360,"journal":{"name":"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378679.3394537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With the idea of exploiting all the computational resources that an IoT environment with multiple interconnected devices offers, serverkernel is presented as a new operating system architecture that blends ideas from distributed operating systems, Unikernel, and LWK. These concepts are mixed with a server in which a user can remotely offload computations and get the result. This single space-address operating system (OS) can be interpreted as a bare-metal OS in which only drivers for CPU, network, and accelerators are required in order to provide service. To demonstrate the advantages of serverkernel, jonOS, an open-source C implementation of this architecture for Raspberry Pi, is provided. Compared with commercial architectures used in IoT devices, serverkernel achieves an improvement ratio of 1.5 in CPU time, 2.5 in real-time, and around 9 times better in network speed.