Niklas Semmler, Matthias Rost, Georgios Smaragdakis, A. Feldmann
{"title":"Edge replication strategies for wide-area distributed processing","authors":"Niklas Semmler, Matthias Rost, Georgios Smaragdakis, A. Feldmann","doi":"10.1145/3378679.3394532","DOIUrl":null,"url":null,"abstract":"The rapid digitalization across industries comes with many challenges. One key problem is how the ever-growing and volatile data generated at distributed locations can be efficiently processed to inform decision making and improve products. Unfortunately, wide-area network capacity cannot cope with the growth of the data at the network edges. Thus, it is imperative to decide which data should be processed in-situ at the edge and which should be transferred and analyzed in data centers. In this paper, we study two families of proactive online data replication strategies, namely ski-rental and machine learning algorithms, to decide which data is processed at the edge, close to where it is generated, and which is transferred to a data center. Our analysis using real query traces from a Global 2000 company shows that such online replication strategies can significantly reduce data transfer volume in many cases up to 50% compared to naive approaches and achieve close to optimal performance. After analyzing their shortcomings for ease of use and performance, we propose a hybrid strategy that combines the advantages of both competitive and machine learning algorithms.","PeriodicalId":268360,"journal":{"name":"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking","volume":"466 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378679.3394532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The rapid digitalization across industries comes with many challenges. One key problem is how the ever-growing and volatile data generated at distributed locations can be efficiently processed to inform decision making and improve products. Unfortunately, wide-area network capacity cannot cope with the growth of the data at the network edges. Thus, it is imperative to decide which data should be processed in-situ at the edge and which should be transferred and analyzed in data centers. In this paper, we study two families of proactive online data replication strategies, namely ski-rental and machine learning algorithms, to decide which data is processed at the edge, close to where it is generated, and which is transferred to a data center. Our analysis using real query traces from a Global 2000 company shows that such online replication strategies can significantly reduce data transfer volume in many cases up to 50% compared to naive approaches and achieve close to optimal performance. After analyzing their shortcomings for ease of use and performance, we propose a hybrid strategy that combines the advantages of both competitive and machine learning algorithms.