Omer Korech, J. Gordon, E. Katz, D. Feuermann, N. Eisenberg
{"title":"Efficiency enhancement in concentrator solar cells by dielectric micro-concentrators","authors":"Omer Korech, J. Gordon, E. Katz, D. Feuermann, N. Eisenberg","doi":"10.1117/12.733024","DOIUrl":null,"url":null,"abstract":"Essentially loss-less all-dielectric micro-fabricated optics can be tailored to completely eliminate the shadowing losses metallization grids create on the surface of concentrator solar cells. The nonimaging micro-concentrator exploits total internal reflection to redistribute the elevated flux from available macro-concentrators, rather than increasing overall concentration. The optical designs permit widening the metal fingers toward lessening series resistance losses, which can also finesse the need for the intricate metallization patterns of some high-flux cells. Realistic net efficiency gains of ~15% (relative) are achievable in a wide variety of concentrator cells.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.733024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Essentially loss-less all-dielectric micro-fabricated optics can be tailored to completely eliminate the shadowing losses metallization grids create on the surface of concentrator solar cells. The nonimaging micro-concentrator exploits total internal reflection to redistribute the elevated flux from available macro-concentrators, rather than increasing overall concentration. The optical designs permit widening the metal fingers toward lessening series resistance losses, which can also finesse the need for the intricate metallization patterns of some high-flux cells. Realistic net efficiency gains of ~15% (relative) are achievable in a wide variety of concentrator cells.