One-class LS-SVM with zero leave-one-out error

Geritt Kampmann, O. Nelles
{"title":"One-class LS-SVM with zero leave-one-out error","authors":"Geritt Kampmann, O. Nelles","doi":"10.1109/CICA.2014.7013225","DOIUrl":null,"url":null,"abstract":"This paper extends the closed form calculation of the leave-one-out (LOO) error for least-squares support vector machines (LS-SVMs) from the two-class to the one-class case. Furthermore, it proposes a new algorithm for determining the hyperparameters of a one-class LS-SVM with Gaussian kernels which exploits the efficient LOO error calculation. The standard deviations are selected by prior knowledge while the regularization parameter is optimized in order to obtain a tight decision boundary under the constraint of a zero LOO error.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper extends the closed form calculation of the leave-one-out (LOO) error for least-squares support vector machines (LS-SVMs) from the two-class to the one-class case. Furthermore, it proposes a new algorithm for determining the hyperparameters of a one-class LS-SVM with Gaussian kernels which exploits the efficient LOO error calculation. The standard deviations are selected by prior knowledge while the regularization parameter is optimized in order to obtain a tight decision boundary under the constraint of a zero LOO error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
零遗漏误差的一类LS-SVM
本文将最小二乘支持向量机(ls - svm)的留一误差的封闭形式计算从两类扩展到一类。在此基础上,提出了一种利用高斯核确定一类LS-SVM超参数的新算法,该算法利用了高效的LOO误差计算。通过先验知识选择标准偏差,优化正则化参数,得到零LOO误差约束下的严密决策边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-class LS-SVM with zero leave-one-out error Enumeration of reachable, forbidden, live states of gen-left k-net system (with a non-sharing resource place) of Petri Nets Context-based adaptive robot behavior learning model (CARB-LM) New multiagent coordination optimization algorithms for mixed-binary nonlinear programming with control applications Ultra high frequency polynomial and sine artificial higher order neural networks for control signal generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1