{"title":"One-class LS-SVM with zero leave-one-out error","authors":"Geritt Kampmann, O. Nelles","doi":"10.1109/CICA.2014.7013225","DOIUrl":null,"url":null,"abstract":"This paper extends the closed form calculation of the leave-one-out (LOO) error for least-squares support vector machines (LS-SVMs) from the two-class to the one-class case. Furthermore, it proposes a new algorithm for determining the hyperparameters of a one-class LS-SVM with Gaussian kernels which exploits the efficient LOO error calculation. The standard deviations are selected by prior knowledge while the regularization parameter is optimized in order to obtain a tight decision boundary under the constraint of a zero LOO error.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper extends the closed form calculation of the leave-one-out (LOO) error for least-squares support vector machines (LS-SVMs) from the two-class to the one-class case. Furthermore, it proposes a new algorithm for determining the hyperparameters of a one-class LS-SVM with Gaussian kernels which exploits the efficient LOO error calculation. The standard deviations are selected by prior knowledge while the regularization parameter is optimized in order to obtain a tight decision boundary under the constraint of a zero LOO error.