New multiagent coordination optimization algorithms for mixed-binary nonlinear programming with control applications

Haopeng Zhang, Qing Hui
{"title":"New multiagent coordination optimization algorithms for mixed-binary nonlinear programming with control applications","authors":"Haopeng Zhang, Qing Hui","doi":"10.1109/CICA.2014.7013243","DOIUrl":null,"url":null,"abstract":"Mixed-binary nonlinear programming (MBNP), which can be used to optimize network structure and network parameters simultaneously, has been seen widely in applications of cyber-physical network systems. However, it is quite challenging to develop efficient algorithms to solve it practically. On the other hand, swarm intelligence based optimization algorithms can simulate the cooperation and interaction behaviors from social or nature phenomena to solve complex, nonconvex nonlinear problems with high efficiency. Hence, motivated by this observation, we propose a class of new computationally efficient algorithms called coupled spring forced multiagent coordination optimization (CSFMCO), by exploiting the chaos-like behavior of two-mass two-spring mechanical systems to improve the ability of algorithmic exploration and thus to fast solve the MBNP problem. Together with the continuous version of CSFMCO, a binary version of CSFMCO and a switching version between continuous and binary versions are presented. Moreover, to numerically illustrate our proposed algorithms, a formation control problem and resource allocation problem for cyber-physical networks are investigated by using the proposed algorithms.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Mixed-binary nonlinear programming (MBNP), which can be used to optimize network structure and network parameters simultaneously, has been seen widely in applications of cyber-physical network systems. However, it is quite challenging to develop efficient algorithms to solve it practically. On the other hand, swarm intelligence based optimization algorithms can simulate the cooperation and interaction behaviors from social or nature phenomena to solve complex, nonconvex nonlinear problems with high efficiency. Hence, motivated by this observation, we propose a class of new computationally efficient algorithms called coupled spring forced multiagent coordination optimization (CSFMCO), by exploiting the chaos-like behavior of two-mass two-spring mechanical systems to improve the ability of algorithmic exploration and thus to fast solve the MBNP problem. Together with the continuous version of CSFMCO, a binary version of CSFMCO and a switching version between continuous and binary versions are presented. Moreover, to numerically illustrate our proposed algorithms, a formation control problem and resource allocation problem for cyber-physical networks are investigated by using the proposed algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有控制应用的混合二元非线性规划新多智能体协调优化算法
混合二元非线性规划(MBNP)可以同时优化网络结构和网络参数,在信息物理网络系统中得到了广泛的应用。然而,开发有效的算法来解决这一问题是非常具有挑战性的。另一方面,基于群体智能的优化算法可以模拟社会或自然现象中的合作和交互行为,以高效率地解决复杂的非凸非线性问题。因此,受这一观察结果的启发,我们提出了一类新的计算效率高的算法,称为耦合弹簧强制多智能体协调优化(CSFMCO),通过利用两质量双弹簧机械系统的混沌行为来提高算法探索的能力,从而快速解决MBNP问题。与CSFMCO的连续版本一起,提出了CSFMCO的二进制版本以及连续和二进制版本之间的切换版本。此外,为了在数值上说明我们所提出的算法,使用所提出的算法研究了网络物理网络的编队控制问题和资源分配问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One-class LS-SVM with zero leave-one-out error Enumeration of reachable, forbidden, live states of gen-left k-net system (with a non-sharing resource place) of Petri Nets Context-based adaptive robot behavior learning model (CARB-LM) New multiagent coordination optimization algorithms for mixed-binary nonlinear programming with control applications Ultra high frequency polynomial and sine artificial higher order neural networks for control signal generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1