A U-Net based Self-Supervised Image Generation Model Applying PCA using Small Datasets

Sanghun Han, Asim Niaz, K. Choi
{"title":"A U-Net based Self-Supervised Image Generation Model Applying PCA using Small Datasets","authors":"Sanghun Han, Asim Niaz, K. Choi","doi":"10.1145/3590003.3590086","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GAN) is a research-based on deep learning technology that synthetically generates, combines, and transforms images similar to the original images. The main focus of GAN existing work has been to improve the quality of generated images and to generate high-resolution images by changing the training scheme or devising more complex models. However, these models require a large amount of data and are not suitable for training with a small amount of data. To address these challenges, this paper aims to improve the quality of images and the stability of training with a small dataset by proposing a novel training method for generating real-world images by using PCA and Self-Supervised GAN. Previously, PCA was applied to DCGAN to generate images with a small dataset, but some images showed poor results. By preparing quantitatively different datasets, we show that the quality of generated image with a small dataset is equivalent, or even better when compared to the quality of the image generated with a large dataset.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative Adversarial Networks (GAN) is a research-based on deep learning technology that synthetically generates, combines, and transforms images similar to the original images. The main focus of GAN existing work has been to improve the quality of generated images and to generate high-resolution images by changing the training scheme or devising more complex models. However, these models require a large amount of data and are not suitable for training with a small amount of data. To address these challenges, this paper aims to improve the quality of images and the stability of training with a small dataset by proposing a novel training method for generating real-world images by using PCA and Self-Supervised GAN. Previously, PCA was applied to DCGAN to generate images with a small dataset, but some images showed poor results. By preparing quantitatively different datasets, we show that the quality of generated image with a small dataset is equivalent, or even better when compared to the quality of the image generated with a large dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于U-Net的小数据集PCA自监督图像生成模型
生成对抗网络(Generative Adversarial Networks, GAN)是一种基于深度学习技术的研究,它综合生成、组合和变换与原始图像相似的图像。GAN现有工作的主要重点是通过改变训练方案或设计更复杂的模型来提高生成图像的质量和生成高分辨率图像。但是,这些模型需要大量的数据,不适合用少量的数据进行训练。为了解决这些挑战,本文提出了一种新的训练方法,通过使用PCA和自监督GAN生成真实世界的图像,从而提高图像的质量和小数据集训练的稳定性。以前,将PCA应用于DCGAN生成数据集较小的图像,但有些图像效果不佳。通过定量地准备不同的数据集,我们表明,与大数据集生成的图像质量相比,小数据集生成的图像质量是等效的,甚至更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Interpretable Brain Network Atlas-Based Hybrid Model for Mild Cognitive Impairment Progression Prediction Heart Sound Classification Algorithm Based on Sub-band Statistics and Time-frequency Fusion Features An Unmanned Lane Detection Algorithm Using Deep Learning and Ordered Test Sets Strategy Federated Learning-Based Intrusion Detection Method for Smart Grid A U-Net based Self-Supervised Image Generation Model Applying PCA using Small Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1