X-Tracking: Tracking Human in Masking Surveillance Video

Zewei Wu, Wei Ke, Cui Wang, Z. Xiong
{"title":"X-Tracking: Tracking Human in Masking Surveillance Video","authors":"Zewei Wu, Wei Ke, Cui Wang, Z. Xiong","doi":"10.1109/UV56588.2022.10185520","DOIUrl":null,"url":null,"abstract":"Pedestrian tracking studies have been facilitated by a large amount of surveillance apparatus in the city while also raising public privacy concerns. In this paper, we propose X-Tracking, a privacy-aware pedestrian tracking paradigm designed for vision systems in Smart City. It allows low-cost compatibility with existing surveillance architecture. To protect entities’ privacy, X-Tracking uses video pre-processing with desensitization so that identity information is unexposed to the tracking algorithm. We implement system-level privacy protection by redesigning the tracking framework that decouples all services based on a single responsibility principle. Then, we elaborate on the roles, behaviors, and protocols used in the new system and illustrate how the paradigm strikes a favorable balance between privacy protection and convenience services. Furthermore, we propose a new tracking task that aims to track humans in masking surveillance video. It is comparable to previous tracking tasks but considering the target with a distorted appearance poses new challenges for visual tracking. Finally, we evaluate the baseline algorithm on the task with a demo dataset.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pedestrian tracking studies have been facilitated by a large amount of surveillance apparatus in the city while also raising public privacy concerns. In this paper, we propose X-Tracking, a privacy-aware pedestrian tracking paradigm designed for vision systems in Smart City. It allows low-cost compatibility with existing surveillance architecture. To protect entities’ privacy, X-Tracking uses video pre-processing with desensitization so that identity information is unexposed to the tracking algorithm. We implement system-level privacy protection by redesigning the tracking framework that decouples all services based on a single responsibility principle. Then, we elaborate on the roles, behaviors, and protocols used in the new system and illustrate how the paradigm strikes a favorable balance between privacy protection and convenience services. Furthermore, we propose a new tracking task that aims to track humans in masking surveillance video. It is comparable to previous tracking tasks but considering the target with a distorted appearance poses new challenges for visual tracking. Finally, we evaluate the baseline algorithm on the task with a demo dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
x跟踪:跟踪人在掩蔽监控视频
城市中大量的监控设备为行人跟踪研究提供了便利,同时也引起了公众对隐私的担忧。在本文中,我们提出了X-Tracking,这是一种为智慧城市视觉系统设计的隐私感知行人跟踪范例。它允许低成本兼容现有的监控架构。为了保护实体的隐私,X-Tracking采用了脱敏视频预处理,使身份信息不会暴露在跟踪算法中。我们通过重新设计跟踪框架来实现系统级隐私保护,该框架基于单一责任原则解耦了所有服务。然后,我们详细阐述了新系统中使用的角色、行为和协议,并说明了范式如何在隐私保护和便利服务之间取得良好的平衡。此外,我们提出了一种新的跟踪任务,旨在跟踪隐藏监控视频中的人。它与以往的跟踪任务相当,但考虑到目标的畸变外观,对视觉跟踪提出了新的挑战。最后,我们用一个演示数据集评估了任务上的基线算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Cooperative Network for Person Image Generation Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning Dynamical Simulation Study of Hybrid Solar-Fossil Fuel Thermochemical Storage and Electricity, Heat and Cold Generation System Bag of Tricks for “Vision Meet Alage” Object Detection Challenge Density Functional Theory Study of Adding Ionic Liquid to Aqueous Ammonia System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1