Observations of wave breaking and surf zone width from a real-time cross-shore array of wave and current sensors at Duck, NC

R. Mulligan, J. Hanson, K. Hathaway
{"title":"Observations of wave breaking and surf zone width from a real-time cross-shore array of wave and current sensors at Duck, NC","authors":"R. Mulligan, J. Hanson, K. Hathaway","doi":"10.1109/CWTM.2011.5759540","DOIUrl":null,"url":null,"abstract":"Data from a cross-shore array of acoustic sensors at the US Army Corps of Engineers Field Research Facility is examined for evidence of wave transformation and longshore currents across the surf zone by comparing several events in 2009–10 with different wave statistics. Hurricane Bill (Hs = 3+ m, Tp = 18 s) was a long-period wave event with strong evidence of non-linear wave transformations, and a track that was offshore such that the coast received very little wind. A strong depth-uniform longshore current was observed at the 5 and 6 m sites (up to 1.8 m/s) that was in-phase with the wave energy. Weak currents were measured at the 8 and 11 m depth sites, indicating that the limit of the surf zone extended to between 6 and 8 m depth. Hurricane/Nor'easter Ida (Hs = 5+ m, Tp = 12 s) was a typical large wave event in the fall, with strong winds (wind-sea a major wave component) and rotating wind direction. Hurricane Earl (Hs = 4+ m, Tp = 15 s) was the first major wave event with all sensors in place, since the sensors at the 2 and 3 m depths were added in August 2010. For the selected events we present the observations of wave evolution across the surf zone. The offshore extent of wave breaking was determined from Argus Station imagery by analyzing pixel intensity for time exposure images along cross-shore transect. Surf zone widths are compared to the estimated extent of breaking by comparing wave energy across the array and the magnitude of the longshore current. The alongshore momentum balance was estimated to determine the contribution of radiation stress gradients to observed longshore current. The results provide a comparison of the seaward limit of the surf zone and width of the wave-driven current for different wave forcing conditions.","PeriodicalId":345178,"journal":{"name":"2011 IEEE/OES 10th Current, Waves and Turbulence Measurements (CWTM)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/OES 10th Current, Waves and Turbulence Measurements (CWTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWTM.2011.5759540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Data from a cross-shore array of acoustic sensors at the US Army Corps of Engineers Field Research Facility is examined for evidence of wave transformation and longshore currents across the surf zone by comparing several events in 2009–10 with different wave statistics. Hurricane Bill (Hs = 3+ m, Tp = 18 s) was a long-period wave event with strong evidence of non-linear wave transformations, and a track that was offshore such that the coast received very little wind. A strong depth-uniform longshore current was observed at the 5 and 6 m sites (up to 1.8 m/s) that was in-phase with the wave energy. Weak currents were measured at the 8 and 11 m depth sites, indicating that the limit of the surf zone extended to between 6 and 8 m depth. Hurricane/Nor'easter Ida (Hs = 5+ m, Tp = 12 s) was a typical large wave event in the fall, with strong winds (wind-sea a major wave component) and rotating wind direction. Hurricane Earl (Hs = 4+ m, Tp = 15 s) was the first major wave event with all sensors in place, since the sensors at the 2 and 3 m depths were added in August 2010. For the selected events we present the observations of wave evolution across the surf zone. The offshore extent of wave breaking was determined from Argus Station imagery by analyzing pixel intensity for time exposure images along cross-shore transect. Surf zone widths are compared to the estimated extent of breaking by comparing wave energy across the array and the magnitude of the longshore current. The alongshore momentum balance was estimated to determine the contribution of radiation stress gradients to observed longshore current. The results provide a comparison of the seaward limit of the surf zone and width of the wave-driven current for different wave forcing conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在北卡罗莱纳州达克市,海浪和电流传感器的实时跨岸阵列对波浪破碎和冲浪带宽度的观测
来自美国陆军工程兵团野外研究设施的跨海岸声学传感器阵列的数据通过比较2009-10年不同波浪统计数据的几个事件来检查波浪转换和跨冲浪区的海岸流的证据。飓风比尔(Hs = 3+ m, Tp = 18 s)是一个长周期的波浪事件,有力地证明了波浪的非线性变换,其路径位于近海,因此海岸受到的风很少。在5米和6米的位置(高达1.8米/秒)观察到与波浪能量相一致的强深度均匀的岸流。在8 m和11 m深度处测得弱电流,表明冲浪带的极限延伸到6 ~ 8 m深度之间。飓风/东北风Ida (Hs = 5+ m, Tp = 12 s)是秋季典型的大浪事件,风强(风-海为主要浪分量),风向旋转。厄尔飓风(Hs = 4+ m, Tp = 15 s)是自2010年8月在2米和3米深度增加传感器以来,第一个安装了所有传感器的主要海浪事件。对于选定的事件,我们提出了波浪在冲浪带上的演变观测。通过分析沿海岸样带的时间曝光图像的像素强度,确定了阿格斯站图像的近海破碎程度。通过比较横贯阵列的波浪能量和沿岸洋流的大小,将冲浪带宽度与估计的破裂程度进行比较。估计沿岸动量平衡,以确定辐射应力梯度对观测到的沿岸流的贡献。结果比较了在不同的波浪强迫条件下,海浪带的向海边界和波浪驱动流的宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization and testing of a new bistatic profiling acoustic Doppler velocimeter: The Vectrino-II After 40 years, how are HF radar currents now being used? Observations of wave breaking and surf zone width from a real-time cross-shore array of wave and current sensors at Duck, NC Performance of the nortek Aquadopp Z-Cell Profiler on a NOAA surface buoy High Resolution Doppler profiler measurements of turbulence from a profiling body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1