Vishakha Gupta, Rob C. Knauerhase, P. Brett, K. Schwan
{"title":"Kinship: efficient resource management for performance and functionally asymmetric platforms","authors":"Vishakha Gupta, Rob C. Knauerhase, P. Brett, K. Schwan","doi":"10.1145/2482767.2482787","DOIUrl":null,"url":null,"abstract":"On-chip heterogeneity has become key to balancing performance and power constraints, resulting in disparate (functionally overlapping but not equivalent) cores on a single die. Requiring developers to deal with such heterogeneity can impede adoption through increased programming effort and result in cross-platform incompatibility. We propose that systems software must evolve to dynamically accommodate heterogeneity and to automatically choose task-to-resource mappings to best use these features. We describe the kinship approach for mapping workloads to heterogeneous cores. A hypervisor-level realization of the approach on a variety of experimental heterogeneous platforms demonstrates the general applicability and utility of kinship-based scheduling, matching dynamic workloads to available resources as well as scaling with the number of processes and with different types/configurations of compute resources. Performance advantages of kinship based scheduling are evident for runs across multiple generations of heterogeneous platforms.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2482767.2482787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
On-chip heterogeneity has become key to balancing performance and power constraints, resulting in disparate (functionally overlapping but not equivalent) cores on a single die. Requiring developers to deal with such heterogeneity can impede adoption through increased programming effort and result in cross-platform incompatibility. We propose that systems software must evolve to dynamically accommodate heterogeneity and to automatically choose task-to-resource mappings to best use these features. We describe the kinship approach for mapping workloads to heterogeneous cores. A hypervisor-level realization of the approach on a variety of experimental heterogeneous platforms demonstrates the general applicability and utility of kinship-based scheduling, matching dynamic workloads to available resources as well as scaling with the number of processes and with different types/configurations of compute resources. Performance advantages of kinship based scheduling are evident for runs across multiple generations of heterogeneous platforms.