Adaptive treatment of anemia on hemodialysis patients: A reinforcement learning approach

Pablo Escandell-Montero, J. Martínez-Martínez, J. Martín-Guerrero, E. Soria-Olivas, J. Vila-Francés, J. R. M. Benedito
{"title":"Adaptive treatment of anemia on hemodialysis patients: A reinforcement learning approach","authors":"Pablo Escandell-Montero, J. Martínez-Martínez, J. Martín-Guerrero, E. Soria-Olivas, J. Vila-Francés, J. R. M. Benedito","doi":"10.1109/CIDM.2011.5949442","DOIUrl":null,"url":null,"abstract":"The aim of this work is to study the applicability of reinforcement learning methods to design adaptive treatment strategies that optimize, in the long-term, the dosage of erythropoiesis-stimulating agents (ESAs) in the management of anemia in patients undergoing hemodialysis. Adaptive treatment strategies are recently emerging as a new paradigm for the treatment and long-term management of the chronic disease. Reinforcement Learning (RL) can be useful to extract such strategies from clinical data, taking into account delayed effects and without requiring any mathematical model. In this work, we focus on the so-called Fitted Q Iteration algorithm, a RL approach that deals with the data very efficiently. Achieved results show the suitability of the proposed RL policies that can improve the performance of the treatment followed in the clinics. The methodology can be easily extended to other problems of drug dosage optimization.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The aim of this work is to study the applicability of reinforcement learning methods to design adaptive treatment strategies that optimize, in the long-term, the dosage of erythropoiesis-stimulating agents (ESAs) in the management of anemia in patients undergoing hemodialysis. Adaptive treatment strategies are recently emerging as a new paradigm for the treatment and long-term management of the chronic disease. Reinforcement Learning (RL) can be useful to extract such strategies from clinical data, taking into account delayed effects and without requiring any mathematical model. In this work, we focus on the so-called Fitted Q Iteration algorithm, a RL approach that deals with the data very efficiently. Achieved results show the suitability of the proposed RL policies that can improve the performance of the treatment followed in the clinics. The methodology can be easily extended to other problems of drug dosage optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血液透析患者贫血的适应性治疗:强化学习方法
这项工作的目的是研究强化学习方法的适用性,以设计适应性治疗策略,优化长期的促红细胞生成素(ESAs)在血液透析患者贫血管理中的剂量。适应性治疗策略最近成为慢性疾病治疗和长期管理的新范式。强化学习(RL)可以从临床数据中提取这些策略,考虑到延迟效应,不需要任何数学模型。在这项工作中,我们专注于所谓的拟合Q迭代算法,这是一种非常有效地处理数据的强化学习方法。取得的结果表明,建议的RL政策的适用性,可以改善诊所所遵循的治疗效果。该方法可推广到其他药物用量优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A multi-Biclustering Combinatorial Based algorithm Active classifier training with the 3DS strategy Link Pattern Prediction with tensor decomposition in multi-relational networks Using gaming strategies for attacker and defender in recommender systems Generating materialized views using ant based approaches and information retrieval technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1