Effective and Robust Pruning for Top-Down Join Enumeration Algorithms

Pit Fender, G. Moerkotte, Thomas Neumann, Viktor Leis
{"title":"Effective and Robust Pruning for Top-Down Join Enumeration Algorithms","authors":"Pit Fender, G. Moerkotte, Thomas Neumann, Viktor Leis","doi":"10.1109/ICDE.2012.27","DOIUrl":null,"url":null,"abstract":"Finding the optimal execution order of join operations is a crucial task of today's cost-based query optimizers. There are two approaches to identify the best plan: bottom-up and top-down join enumeration. For both optimization strategies efficient algorithms have been published. However, only the top-down approach allows for branch-and-bound pruning. Two pruning techniques can be found in the literature. We add six new ones. Combined, they improve performance roughly by an average factor of 2 - 5. Even more important, our techniques improve the worst case by two orders of magnitude. Additionally, we introduce a new, very efficient, and easy to implement top-down join enumeration algorithm. This algorithm, together with our improved pruning techniques, yields a performance which is by an average factor of 6 - 9 higher than the performance of the original top-down enumeration algorithm with the original pruning methods.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Finding the optimal execution order of join operations is a crucial task of today's cost-based query optimizers. There are two approaches to identify the best plan: bottom-up and top-down join enumeration. For both optimization strategies efficient algorithms have been published. However, only the top-down approach allows for branch-and-bound pruning. Two pruning techniques can be found in the literature. We add six new ones. Combined, they improve performance roughly by an average factor of 2 - 5. Even more important, our techniques improve the worst case by two orders of magnitude. Additionally, we introduce a new, very efficient, and easy to implement top-down join enumeration algorithm. This algorithm, together with our improved pruning techniques, yields a performance which is by an average factor of 6 - 9 higher than the performance of the original top-down enumeration algorithm with the original pruning methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自顶向下连接枚举算法的有效鲁棒剪枝
查找连接操作的最佳执行顺序是当今基于成本的查询优化器的一项关键任务。有两种方法可以确定最佳计划:自底向上和自顶向下的连接枚举。对于这两种优化策略,已经发表了高效的算法。然而,只有自顶向下的方法才允许分支绑定修剪。在文献中可以找到两种修剪技术。我们加了六个新的。综合起来,它们大致提高了2 - 5倍的平均性能。更重要的是,我们的技术将最坏的情况提高了两个数量级。此外,我们还引入了一种新的、非常高效且易于实现的自顶向下连接枚举算法。该算法与我们改进的剪枝技术一起,产生的性能比原始的自顶向下枚举算法使用原始剪枝方法的性能平均高出6 - 9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1