Pit Fender, G. Moerkotte, Thomas Neumann, Viktor Leis
{"title":"Effective and Robust Pruning for Top-Down Join Enumeration Algorithms","authors":"Pit Fender, G. Moerkotte, Thomas Neumann, Viktor Leis","doi":"10.1109/ICDE.2012.27","DOIUrl":null,"url":null,"abstract":"Finding the optimal execution order of join operations is a crucial task of today's cost-based query optimizers. There are two approaches to identify the best plan: bottom-up and top-down join enumeration. For both optimization strategies efficient algorithms have been published. However, only the top-down approach allows for branch-and-bound pruning. Two pruning techniques can be found in the literature. We add six new ones. Combined, they improve performance roughly by an average factor of 2 - 5. Even more important, our techniques improve the worst case by two orders of magnitude. Additionally, we introduce a new, very efficient, and easy to implement top-down join enumeration algorithm. This algorithm, together with our improved pruning techniques, yields a performance which is by an average factor of 6 - 9 higher than the performance of the original top-down enumeration algorithm with the original pruning methods.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Finding the optimal execution order of join operations is a crucial task of today's cost-based query optimizers. There are two approaches to identify the best plan: bottom-up and top-down join enumeration. For both optimization strategies efficient algorithms have been published. However, only the top-down approach allows for branch-and-bound pruning. Two pruning techniques can be found in the literature. We add six new ones. Combined, they improve performance roughly by an average factor of 2 - 5. Even more important, our techniques improve the worst case by two orders of magnitude. Additionally, we introduce a new, very efficient, and easy to implement top-down join enumeration algorithm. This algorithm, together with our improved pruning techniques, yields a performance which is by an average factor of 6 - 9 higher than the performance of the original top-down enumeration algorithm with the original pruning methods.