Supervised learning data preprocessing for short-term traffic flow prediction

Anca-Maria Ilienescu, A. Iovanovici, Mircea Vladutiu
{"title":"Supervised learning data preprocessing for short-term traffic flow prediction","authors":"Anca-Maria Ilienescu, A. Iovanovici, Mircea Vladutiu","doi":"10.1109/Informatics57926.2022.10083399","DOIUrl":null,"url":null,"abstract":"The goal of the investigation is to develop and test a system capable of providing short-term (less than an hour) traffic flow predictions in an urban environment. We present a data acquisition and preprocessing pipeline capable of filtering and normalizing data collected using Here Maps API. The data is used for training a supervised machine learning model which is afterwards validated by observing actual road traffic conditions and making empirical observations on the predicted routes. All the experimental determinations were carried on the city of Timisoara, Romania. The traffic flow data collected and used is available as an open dataset.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Informatics57926.2022.10083399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of the investigation is to develop and test a system capable of providing short-term (less than an hour) traffic flow predictions in an urban environment. We present a data acquisition and preprocessing pipeline capable of filtering and normalizing data collected using Here Maps API. The data is used for training a supervised machine learning model which is afterwards validated by observing actual road traffic conditions and making empirical observations on the predicted routes. All the experimental determinations were carried on the city of Timisoara, Romania. The traffic flow data collected and used is available as an open dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短期交通流预测的监督学习数据预处理
调查的目的是开发和测试一个能够在城市环境中提供短期(少于一小时)交通流量预测的系统。我们提出了一个数据采集和预处理管道,能够过滤和规范化使用Here Maps API收集的数据。这些数据用于训练一个有监督的机器学习模型,该模型随后通过观察实际道路交通状况和对预测路线进行经验观察来验证。所有的实验测定都在罗马尼亚的蒂米什瓦拉市进行。收集和使用的交通流量数据作为开放数据集可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Engineers' Questions and Answers on Stack Exchange Collision detection and response approaches for computer muscle modelling Supervised learning data preprocessing for short-term traffic flow prediction A 1D CNN-based model for IoT anomaly detection using INT data Image steganography with using QR code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1