A 1D CNN-based model for IoT anomaly detection using INT data

Gereltsetseg Altangerel, M. Tejfel, Enkhtur Tsogbaatar
{"title":"A 1D CNN-based model for IoT anomaly detection using INT data","authors":"Gereltsetseg Altangerel, M. Tejfel, Enkhtur Tsogbaatar","doi":"10.1109/Informatics57926.2022.10083469","DOIUrl":null,"url":null,"abstract":"Due to the limited capacity and versatility of Internet of Things (IoT) devices, it isn't easy to implement advanced security mechanisms and adhere to common security standards on IoT devices. Our study proposes a network-based solution to address these issues in the IoT environment. This solution leverages the advantages of a programmable data plane, Software-Defined Networking (SDN), and machine learning. In-Band Network Telemetry (INT) is a novel monitoring application developed using a programmable data plane to collect network characteristics (INT data) in real time without affecting network performance. We aim to detect IoT attacks based on INT data using a 1D CNN-based deep learning model. As far as we know, this model is the first attempt to use INT data to detect IoT attacks. We created an SDN network infrastructure in a simulation environment and collected INT data from IoT devices in the event of an attack or non-attack. Our proposed 1D CNN-based model using INT data can detect IoT attacks with approximately 99.63 % accuracy. Our solution is relatively cost-effective and performs well compared to other competing models.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Informatics57926.2022.10083469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the limited capacity and versatility of Internet of Things (IoT) devices, it isn't easy to implement advanced security mechanisms and adhere to common security standards on IoT devices. Our study proposes a network-based solution to address these issues in the IoT environment. This solution leverages the advantages of a programmable data plane, Software-Defined Networking (SDN), and machine learning. In-Band Network Telemetry (INT) is a novel monitoring application developed using a programmable data plane to collect network characteristics (INT data) in real time without affecting network performance. We aim to detect IoT attacks based on INT data using a 1D CNN-based deep learning model. As far as we know, this model is the first attempt to use INT data to detect IoT attacks. We created an SDN network infrastructure in a simulation environment and collected INT data from IoT devices in the event of an attack or non-attack. Our proposed 1D CNN-based model using INT data can detect IoT attacks with approximately 99.63 % accuracy. Our solution is relatively cost-effective and performs well compared to other competing models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用INT数据进行物联网异常检测的一维cnn模型
由于物联网(IoT)设备的容量和多功能性有限,在物联网设备上实施高级安全机制并遵守通用安全标准并不容易。我们的研究提出了一个基于网络的解决方案来解决物联网环境中的这些问题。该解决方案充分利用了可编程数据平面、软件定义网络(SDN)和机器学习的优势。带内网络遥测(INT)是一种利用可编程数据平面实时采集网络特征(INT数据)而不影响网络性能的新型监控应用。我们的目标是使用基于一维cnn的深度学习模型来检测基于INT数据的物联网攻击。据我们所知,这个模型是第一次尝试使用INT数据来检测物联网攻击。我们在模拟环境中创建了SDN网络基础设施,并在发生攻击或非攻击的情况下从物联网设备收集INT数据。我们提出的基于cnn的一维模型使用INT数据可以检测物联网攻击,准确率约为99.63%。我们的解决方案相对成本效益高,与其他竞争机型相比表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Engineers' Questions and Answers on Stack Exchange Collision detection and response approaches for computer muscle modelling Supervised learning data preprocessing for short-term traffic flow prediction A 1D CNN-based model for IoT anomaly detection using INT data Image steganography with using QR code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1