Classification of Indonesian News using LSTM-RNN Method

R. Saputra, Alexander Waworuntu, A. Rusli
{"title":"Classification of Indonesian News using LSTM-RNN Method","authors":"R. Saputra, Alexander Waworuntu, A. Rusli","doi":"10.1109/conmedia53104.2021.9617187","DOIUrl":null,"url":null,"abstract":"News categorization has the aim of categorizing news into certain categories. In this paper, we build a machine learning model to categorize Indonesian news. One of the best methods for predicting large text sets is the Recurrent Neural Network (RNN) algorithm with Long-Short Term Memory (LSTM) architecture. In previous studies, the use of the LSTM-RNN method has a high level of accuracy for classifying news in English. For further exploration, in this study, a dataset to train and test the Indonesian news application model from the Jakartaresearch and web scraping from Kompas.com is used. Based on the experiment for the LSTM-RNN model, the final score of accuracy was 93%, the recall score was 91.8%, the precision score was 92.4%, and the Fl-Score score was 91.8%s. 17 news predictions from Detik.com have 100% accurate results predicting the correct category.","PeriodicalId":230207,"journal":{"name":"2021 6th International Conference on New Media Studies (CONMEDIA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on New Media Studies (CONMEDIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/conmedia53104.2021.9617187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

News categorization has the aim of categorizing news into certain categories. In this paper, we build a machine learning model to categorize Indonesian news. One of the best methods for predicting large text sets is the Recurrent Neural Network (RNN) algorithm with Long-Short Term Memory (LSTM) architecture. In previous studies, the use of the LSTM-RNN method has a high level of accuracy for classifying news in English. For further exploration, in this study, a dataset to train and test the Indonesian news application model from the Jakartaresearch and web scraping from Kompas.com is used. Based on the experiment for the LSTM-RNN model, the final score of accuracy was 93%, the recall score was 91.8%, the precision score was 92.4%, and the Fl-Score score was 91.8%s. 17 news predictions from Detik.com have 100% accurate results predicting the correct category.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM-RNN方法的印尼新闻分类
新闻分类的目的是将新闻分类成一定的类别。在本文中,我们建立了一个机器学习模型来对印尼新闻进行分类。具有长短期记忆(LSTM)结构的递归神经网络(RNN)算法是预测大型文本集的最佳方法之一。在以往的研究中,使用LSTM-RNN方法对英语新闻进行分类具有较高的准确率。为了进一步探索,本研究使用Jakartaresearch和Kompas.com的网页抓取数据集来训练和测试印尼新闻应用模型。基于LSTM-RNN模型的实验,最终准确率为93%,召回率为91.8%,准确率为92.4%,Fl-Score得分为91.8%。Detik.com的17个新闻预测结果100%准确,预测了正确的类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Application of a Decision Support System for Senior High School Scholarship with Modified MADM Method The Effect of Design User Interface (UI) E-Commerce on User Experience (UX) Expert System for Legal Consultation of Song Royalty with Iterative Dichotomiser 3 Algorithm Classification of Indonesian News using LSTM-RNN Method Building “Passwle” System Based on Siamese Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1