Trajectory planning for saving energy of a flexible manipulator using soft computing methods

A. Abe, Kazuma Komuro
{"title":"Trajectory planning for saving energy of a flexible manipulator using soft computing methods","authors":"A. Abe, Kazuma Komuro","doi":"10.1109/ICCAS.2010.5670141","DOIUrl":null,"url":null,"abstract":"This paper presents a trajectory planning method for saving the operating energy of a flexible manipulator in point-to-point (PTP) motion. An artificial neural network (ANN) is employed to generate the desired joint angle, and then, particle swarm optimization (PSO) is used as the learning algorithm. The sum of the motor torques is adopted as the objective function in the PSO algorithm. By operating the manipulator along the trajectory obtained using the proposed method, residual vibrations can also be suppressed. The applicability and effectiveness of the proposed trajectory planning method are confirmed by performing numerical simulation and verified by experimental results.","PeriodicalId":158687,"journal":{"name":"ICCAS 2010","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAS 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2010.5670141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a trajectory planning method for saving the operating energy of a flexible manipulator in point-to-point (PTP) motion. An artificial neural network (ANN) is employed to generate the desired joint angle, and then, particle swarm optimization (PSO) is used as the learning algorithm. The sum of the motor torques is adopted as the objective function in the PSO algorithm. By operating the manipulator along the trajectory obtained using the proposed method, residual vibrations can also be suppressed. The applicability and effectiveness of the proposed trajectory planning method are confirmed by performing numerical simulation and verified by experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于软计算方法的柔性机械臂节能轨迹规划
提出了一种节省柔性机械臂点对点运动能量的轨迹规划方法。首先利用人工神经网络(ANN)生成理想的关节角,然后利用粒子群算法(PSO)进行学习。在粒子群算法中,采用电机转矩之和作为目标函数。通过沿着该方法得到的轨迹运行机械手,还可以抑制残余振动。数值仿真和实验结果验证了所提轨迹规划方法的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low swing CMOS current mode charge pump A robust walking control of humanoid robots for industrial application Model-based software validation for automotive control systems Propose of unsealed deep groove ball bearing condition monitoring using sound analysis and fuzzy logic Effective covariance tracker based on adaptive changing of tracking window
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1