Task Allocation with Geographic Partition in Spatial Crowdsourcing

Guanyu Ye, Yan Zhao, Xuanhao Chen, Kai Zheng
{"title":"Task Allocation with Geographic Partition in Spatial Crowdsourcing","authors":"Guanyu Ye, Yan Zhao, Xuanhao Chen, Kai Zheng","doi":"10.1145/3459637.3482300","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed a revolution in Spatial Crowdsourcing (SC), in which people with mobile connectivity can perform spatio-temporal tasks that involve travel to specified locations. In this paper, we identify and study in depth a new multi-center-based task allocation problem in the context of SC, where multiple allocation centers exist. In particular, we aim to maximize the total number of the allocated tasks while minimizing the average allocated task number difference. To solve the problem, we propose a two-phase framework, called Task Allocation with Geographic Partition, consisting of a geographic partition phase and a task allocation phase. The first phase is to divide the whole study area based on the allocation centers by using both a basic Voronoi diagram-based algorithm and an adaptive weighted Voronoi diagram-based algorithm. In the allocation phase, we utilize a Reinforcement Learning method to achieve the task allocation, where a graph neural network with the attention mechanism is used to learn the embeddings of allocation centers, delivery points and workers. Extensive experiments give insight into the effectiveness and efficiency of the proposed solutions.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Recent years have witnessed a revolution in Spatial Crowdsourcing (SC), in which people with mobile connectivity can perform spatio-temporal tasks that involve travel to specified locations. In this paper, we identify and study in depth a new multi-center-based task allocation problem in the context of SC, where multiple allocation centers exist. In particular, we aim to maximize the total number of the allocated tasks while minimizing the average allocated task number difference. To solve the problem, we propose a two-phase framework, called Task Allocation with Geographic Partition, consisting of a geographic partition phase and a task allocation phase. The first phase is to divide the whole study area based on the allocation centers by using both a basic Voronoi diagram-based algorithm and an adaptive weighted Voronoi diagram-based algorithm. In the allocation phase, we utilize a Reinforcement Learning method to achieve the task allocation, where a graph neural network with the attention mechanism is used to learn the embeddings of allocation centers, delivery points and workers. Extensive experiments give insight into the effectiveness and efficiency of the proposed solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间众包中具有地理分区的任务分配
近年来见证了空间众包(SC)的革命,在这种革命中,拥有移动连接的人可以执行涉及到特定地点旅行的时空任务。本文对供应链环境下存在多个分配中心的一种新的基于多中心的任务分配问题进行了深入的研究。特别是,我们的目标是最大化分配的任务总数,同时最小化平均分配的任务数差。为了解决这个问题,我们提出了一个两阶段的框架,称为带有地理分区的任务分配,它由地理分区阶段和任务分配阶段组成。第一阶段采用基于Voronoi图的基本算法和基于自适应加权Voronoi图的算法,根据分配中心对整个研究区域进行划分。在分配阶段,我们使用强化学习方法来实现任务分配,其中使用带有注意机制的图神经网络来学习分配中心、交付点和工人的嵌入。大量的实验可以深入了解所提出的解决方案的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1