{"title":"Effects of Cure State on the Ultrasonic Nonlinear Parameter in Adhesive Joints","authors":"Guoli Liu, J. Qu, L. Jacobs","doi":"10.1115/imece2000-1649","DOIUrl":null,"url":null,"abstract":"\n The objective of this paper is to characterize the cure state of polymer adhesive joints using nonlinear ultrasonic techniques. To this end, through transmission tests were carried out on joint samples that had been subjected to various curing conditions. In these tests, a 40-cycle harmonic signal was generated by a 2MHz narrow-band PZT transducer as the incident wave. The wave transmitted through the adhesive joint was received with a 4MHz narrow-band PZT transducer. The magnitude of the second order harmonics in the transmitted signal was measured and the corresponding nonlinear parameter β was calculated. A fairly good correlation was observed between the nonlinear parameter and the cure state. It was found that under-curing (lower curing temperature or short curing time) tends to increase the nonlinear parameter.","PeriodicalId":110638,"journal":{"name":"Nondestructive Evaluation and Characterization of Engineering Materials for Reliability and Durability Predictions","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nondestructive Evaluation and Characterization of Engineering Materials for Reliability and Durability Predictions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The objective of this paper is to characterize the cure state of polymer adhesive joints using nonlinear ultrasonic techniques. To this end, through transmission tests were carried out on joint samples that had been subjected to various curing conditions. In these tests, a 40-cycle harmonic signal was generated by a 2MHz narrow-band PZT transducer as the incident wave. The wave transmitted through the adhesive joint was received with a 4MHz narrow-band PZT transducer. The magnitude of the second order harmonics in the transmitted signal was measured and the corresponding nonlinear parameter β was calculated. A fairly good correlation was observed between the nonlinear parameter and the cure state. It was found that under-curing (lower curing temperature or short curing time) tends to increase the nonlinear parameter.