Application of Low Temperature Phase Change Materials to Enable the Cold Weather Operability of B100 Biodiesel in Diesel Trucks

Obiajulu Nnaemeka, E. Bibeau
{"title":"Application of Low Temperature Phase Change Materials to Enable the Cold Weather Operability of B100 Biodiesel in Diesel Trucks","authors":"Obiajulu Nnaemeka, E. Bibeau","doi":"10.1115/ES2018-7161","DOIUrl":null,"url":null,"abstract":"The use of pure biodiesel for compression ignition engines during the winter poses a challenge due to gelling and plugging of engine filters and fuel lines. The most common method to prevent this issue is blending with petroleum diesel and many engine manufacturers limit the biodiesel in blends to 20% or less for warrantee purposes; as low as 5% may be set for winter months. In a previous work, the authors proposed a novel fuel tank design that could potentially solve this problem and presented a numerical validation of the concept of using phase change materials (PCM) to enable cold weather operability of 100% biodiesel by maintaining its temperature above a cloud point of 5 degrees Celsius for over 3 days at an ambient temperature of −25 degrees Celsius and initial temperature of 20 degrees Celsius. In this research, an experimental analysis is performed using a scaled model of the fuel tank with canola oil as a test fluid in the tank. The tank is subjected to an ambient temperature of −20 degrees Celsius in an icing tunnel facility with air velocity at 10 m/s. The results show that the time above cloud point was increased from 18.6 hours to 22.5 and 33 hours respectively when 4 and 12 PCM tubes were inserted in the tank containing 33 litres of canola oil. A simple numerical model was formulated to predict the transient temperature of the oil and comparison with experimental results showed excellent agreement.","PeriodicalId":298211,"journal":{"name":"ASME 2018 12th International Conference on Energy Sustainability","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 12th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ES2018-7161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of pure biodiesel for compression ignition engines during the winter poses a challenge due to gelling and plugging of engine filters and fuel lines. The most common method to prevent this issue is blending with petroleum diesel and many engine manufacturers limit the biodiesel in blends to 20% or less for warrantee purposes; as low as 5% may be set for winter months. In a previous work, the authors proposed a novel fuel tank design that could potentially solve this problem and presented a numerical validation of the concept of using phase change materials (PCM) to enable cold weather operability of 100% biodiesel by maintaining its temperature above a cloud point of 5 degrees Celsius for over 3 days at an ambient temperature of −25 degrees Celsius and initial temperature of 20 degrees Celsius. In this research, an experimental analysis is performed using a scaled model of the fuel tank with canola oil as a test fluid in the tank. The tank is subjected to an ambient temperature of −20 degrees Celsius in an icing tunnel facility with air velocity at 10 m/s. The results show that the time above cloud point was increased from 18.6 hours to 22.5 and 33 hours respectively when 4 and 12 PCM tubes were inserted in the tank containing 33 litres of canola oil. A simple numerical model was formulated to predict the transient temperature of the oil and comparison with experimental results showed excellent agreement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温相变材料应用于B100生物柴油卡车的低温可操作性
在冬季使用纯生物柴油用于压缩点火发动机是一个挑战,因为发动机滤清器和燃油管路会发生胶凝和堵塞。防止这个问题最常见的方法是与石油柴油混合,许多发动机制造商将生物柴油的混合物限制在20%或更少,以保证目的;在冬季可能会低至5%。在之前的工作中,作者提出了一种新的油箱设计,可以潜在地解决这个问题,并提出了使用相变材料(PCM)的概念的数值验证,通过在环境温度为- 25摄氏度和初始温度为20摄氏度的情况下将其温度保持在5摄氏度以上3天以上,使100%生物柴油在寒冷天气下可操作性。在本研究中,使用以菜籽油为试验液的油箱比例模型进行了实验分析。在结冰隧道设施中,储罐的环境温度为- 20℃,风速为10m /s。结果表明,当在装有33升菜籽油的罐中插入4根PCM管和12根PCM管时,在云点以上的时间分别从18.6 h增加到22.5 h和33 h。建立了一个简单的数值模型来预测油的瞬态温度,并与实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating the Agricultural Environmental Burden As Part of a Holistic Life Cycle Assessment of Food Electrochemical Energy Storage and Synthetic Natural Gas Production Based on Reversible Molten Carbonate Cells Application of Low Temperature Phase Change Materials to Enable the Cold Weather Operability of B100 Biodiesel in Diesel Trucks Accurate and Data-Limited Prediction for Smart Home Energy Management A Stand-Alone Hybrid Photovoltaic, Fuel Cell and Battery System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1