3-opt Metaheuristics for the Probabilistic Orienteering Problem

Xiaochen Chou, Luca Maria Gambardella, P. Luangpaiboon, P. Aungkulanon, R. Montemanni
{"title":"3-opt Metaheuristics for the Probabilistic Orienteering Problem","authors":"Xiaochen Chou, Luca Maria Gambardella, P. Luangpaiboon, P. Aungkulanon, R. Montemanni","doi":"10.1145/3463858.3463867","DOIUrl":null,"url":null,"abstract":"The Probabilistic Orienteering Problem (POP) is an optimization problem arising in logistics. A set of customers, each with a probability of requiring a service and a price to be collected in case the service is provided, is given together with deterministic travel times between customers. Given a time budget (length of the delivery window), the problem is to select a subset of the customers to be served within the time budget, in such a way that maximize the expected total prize collected, while minimizing the total expected travel time. The use of a 3-opt heuristic routine to carry out the optimization is discussed in this paper. In particular, it is investigated how such an approach can benefit from the use of a Tabu Search paradigm, and how the best results achieved compared with the state-of-the-art. A vision on how the 3-opt heuristic can improve the speed and efficiency on certain classes of POP instances is given.","PeriodicalId":317727,"journal":{"name":"Proceedings of the 2021 8th International Conference on Industrial Engineering and Applications (Europe)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 8th International Conference on Industrial Engineering and Applications (Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3463858.3463867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Probabilistic Orienteering Problem (POP) is an optimization problem arising in logistics. A set of customers, each with a probability of requiring a service and a price to be collected in case the service is provided, is given together with deterministic travel times between customers. Given a time budget (length of the delivery window), the problem is to select a subset of the customers to be served within the time budget, in such a way that maximize the expected total prize collected, while minimizing the total expected travel time. The use of a 3-opt heuristic routine to carry out the optimization is discussed in this paper. In particular, it is investigated how such an approach can benefit from the use of a Tabu Search paradigm, and how the best results achieved compared with the state-of-the-art. A vision on how the 3-opt heuristic can improve the speed and efficiency on certain classes of POP instances is given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率定向问题的3-opt元启发式
概率定向问题(POP)是物流中的一个优化问题。给定一组客户,每个客户都有需要服务的概率,并且在提供服务的情况下需要收取价格,以及客户之间的确定性旅行时间。给定时间预算(交付窗口的长度),问题是在时间预算内选择要服务的客户子集,以这样一种方式最大化预期的总奖品收集,同时最小化预期的总旅行时间。本文讨论了使用3-opt启发式例程进行优化。特别是,它研究了这种方法如何从禁忌搜索范式的使用中受益,以及如何与最先进的技术相比获得最佳结果。给出了3-opt启发式如何提高某些POP实例类的速度和效率的设想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3-opt Metaheuristics for the Probabilistic Orienteering Problem A Random Restart Local Search Matheuristic for the Flying Sidekick Traveling Salesman Problem A Binary Integer Programming Formulation and Solution for Truck Appointment Scheduling and Reducing Truck Turnaround Time in Container Terminals Reinforcement Learning and Additional Rewards for the Traveling Salesman Problem Machine Learning Approaches for the Traveling Salesman Problem: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1