Estimating Job Flow Times by Using an Agent-Based Approach

W. Weng, S. Fujimura
{"title":"Estimating Job Flow Times by Using an Agent-Based Approach","authors":"W. Weng, S. Fujimura","doi":"10.1109/IIAI-AAI.2016.111","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating flow times of jobs that arrive dynamically in a manufacturing system. A job's flow time refers to the time between the job's arrival and completion. Most existing methods use some predefined equations for such estimation, and most of the equations are designed for single machine manufacturing systems. To better estimate the flow time of a job in a more complex system in which there are multiple machines and multiple workstations, we propose a distributed learning approach that divides the manufacturing system into multiple small parts and collects real-time local information in each part to predict the waiting time for a job. We evaluate the proposed approach by comparing it with existing methods using a variety of problem instances. The results show that the proposed approach outperforms existing methods and accordingly might improve the level of customer service when being used for due date promising.","PeriodicalId":272739,"journal":{"name":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2016.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of estimating flow times of jobs that arrive dynamically in a manufacturing system. A job's flow time refers to the time between the job's arrival and completion. Most existing methods use some predefined equations for such estimation, and most of the equations are designed for single machine manufacturing systems. To better estimate the flow time of a job in a more complex system in which there are multiple machines and multiple workstations, we propose a distributed learning approach that divides the manufacturing system into multiple small parts and collects real-time local information in each part to predict the waiting time for a job. We evaluate the proposed approach by comparing it with existing methods using a variety of problem instances. The results show that the proposed approach outperforms existing methods and accordingly might improve the level of customer service when being used for due date promising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于agent的作业流时间估计方法
研究了制造系统中动态到达作业的流时间估计问题。作业的流程时间是指作业到达和完成之间的时间。大多数现有方法使用一些预定义的方程来进行这种估计,并且大多数方程都是针对单机制造系统设计的。为了在多台机器和多工作站的复杂系统中更好地估计作业的流程时间,我们提出了一种分布式学习方法,该方法将制造系统划分为多个小部件,并在每个部件中收集实时本地信息以预测作业的等待时间。我们通过使用各种问题实例将所提出的方法与现有方法进行比较来评估所提出的方法。结果表明,所提出的方法优于现有的方法,可以提高客户服务水平,当用于到期日承诺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Personalized Feedback System by Visual Biometric Data Analysis A Design and Implementation of Global Distributed POSIX File System on the Top of Multiple Independent Cloud Services Comparing Public Library Management under Designated Administrator System with Direct Management: Forcusing on Reference Service Robust Intelligent Total-Sliding-Mode Control for the Synchronization of Uncertain Chaotic Systems Extraction of Myocardial Fibrosis from MR Using Fuzzy Soft Thresholding Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1