Mitigando os Efeitos de GAN em Classificação de Imagens com CNN

Jackson Mallmann, A. Santin, A. Britto, R. Santos
{"title":"Mitigando os Efeitos de GAN em Classificação de Imagens com CNN","authors":"Jackson Mallmann, A. Santin, A. Britto, R. Santos","doi":"10.5753/sbseg.2019.13978","DOIUrl":null,"url":null,"abstract":"A CNN (Convolutional Neural Network) tem sido frequentemente usada para solução de problemas, gerando um modelo que pode prever a classe da imagem. Neste trabalho, a ausência de integridade na CNN é verificada usando uma GAN (Generative Adversarial Network). Para isso, modelamos um classificador de autenticidade baseado no algoritmo NB (Naive Bayes). Quando os modelos NB e CNN propostos trabalham juntos, 88,88% de acerto foram alcançados. Em 89,88% dos casos as imagens fakes foram identificadas e descartadas. No caso específico da CNN, obteve-se uma precisão de 85,06% com uma confiança de 95%.","PeriodicalId":221963,"journal":{"name":"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg.2019.13978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A CNN (Convolutional Neural Network) tem sido frequentemente usada para solução de problemas, gerando um modelo que pode prever a classe da imagem. Neste trabalho, a ausência de integridade na CNN é verificada usando uma GAN (Generative Adversarial Network). Para isso, modelamos um classificador de autenticidade baseado no algoritmo NB (Naive Bayes). Quando os modelos NB e CNN propostos trabalham juntos, 88,88% de acerto foram alcançados. Em 89,88% dos casos as imagens fakes foram identificadas e descartadas. No caso específico da CNN, obteve-se uma precisão de 85,06% com uma confiança de 95%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用CNN减轻GAN对图像分类的影响
CNN(卷积神经网络)经常被用于故障排除,生成一个可以预测图像类的模型。在这项工作中,CNN完整性的缺失是通过生成对手网络(GAN)来验证的。为此,我们建立了一个基于NB (Naive贝叶斯)算法的真伪分类器模型。当提出的NB和CNN模型协同工作时,成功率达到了88.88%。89.88%的病例发现并丢弃了假图像。在CNN的具体案例中,准确率为85.06%,置信度为95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Secure White Box Implementation of AES Against First Order DCA Defacebot: Uma ferramenta de detecção e notificação de ataques de desfiguração utilizando mecanismos gerenciados por bot de aplicativo de mensagens instantâneas Uma abordagem como ferramenta de apoio ao CSIRT Mitigando os Efeitos de GAN em Classificação de Imagens com CNN An evaluation of a three-modal hand-based database to forensic-based gender recognition Aceleração de Assinaturas Baseadas em Atributos para Internet das Coisas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1