Reconstructing the shifting balance theory in a GA: taking Sewall Wright seriously

F. Oppacher, M. Wineberg
{"title":"Reconstructing the shifting balance theory in a GA: taking Sewall Wright seriously","authors":"F. Oppacher, M. Wineberg","doi":"10.1109/CEC.2000.870298","DOIUrl":null,"url":null,"abstract":"We attempt to reconstruct Sewall Wright's (1932) shifting balance theory in order to address some of the major criticisms leveled against it. The resulting abstract process is applied to the GA forming the shifting balance genetic algorithm (SBGA), which is shown to behave as Wright intended. For example, the SBGA avoids local optima through a shifting balance between subpopulations, as is demonstrated in an experiment. The experiment also shows that the SBGA outperforms the classical GA in both stationary and changing environments.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We attempt to reconstruct Sewall Wright's (1932) shifting balance theory in order to address some of the major criticisms leveled against it. The resulting abstract process is applied to the GA forming the shifting balance genetic algorithm (SBGA), which is shown to behave as Wright intended. For example, the SBGA avoids local optima through a shifting balance between subpopulations, as is demonstrated in an experiment. The experiment also shows that the SBGA outperforms the classical GA in both stationary and changing environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在遗传算法中重构移动平衡理论:以休厄尔·赖特为例
我们试图重建Sewall Wright(1932)的转移平衡理论,以解决针对它的一些主要批评。由此产生的抽象过程被应用到遗传算法中,形成了移位平衡遗传算法(SBGA),该算法显示出Wright预期的行为。例如,SBGA通过亚种群之间的转移平衡来避免局部最优,正如在实验中所证明的那样。实验还表明,该算法在静态环境和变化环境下都优于经典遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1