A Robust Training Signal Generator for Trainable Memristive Digital to Analog Converter

Shivdeep, Sahibia Kaur Vohra, N. Goel, D. Das
{"title":"A Robust Training Signal Generator for Trainable Memristive Digital to Analog Converter","authors":"Shivdeep, Sahibia Kaur Vohra, N. Goel, D. Das","doi":"10.1109/iSES52644.2021.00014","DOIUrl":null,"url":null,"abstract":"There is a perpetual need of evolution in data converters to cater the demand of high speed and accurate data acquisition and processing. The trainable neural data converters can be trained using supervised learning techniques to produce precise data conversions. Such data converters are PVT immune and can be trained in real time using on-chip training signal generators. A trainable digital to analog converter needs accurate labeled analog signals as training signal. This paper proposes a CMOS-memristor hybrid training signal generator circuit and a memristive variable slope ramp generator circuit design. Proposed architecture is PVT immune and robust against mismatches and manufacturing imprecision in circuit component parameters. Proposed design is scalable to produce training signal for N-bit digital to analog converters. Proposed work is implemented and validated in standard CMOS 180nm technology node with SPICE model for the memristor.","PeriodicalId":293167,"journal":{"name":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSES52644.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is a perpetual need of evolution in data converters to cater the demand of high speed and accurate data acquisition and processing. The trainable neural data converters can be trained using supervised learning techniques to produce precise data conversions. Such data converters are PVT immune and can be trained in real time using on-chip training signal generators. A trainable digital to analog converter needs accurate labeled analog signals as training signal. This paper proposes a CMOS-memristor hybrid training signal generator circuit and a memristive variable slope ramp generator circuit design. Proposed architecture is PVT immune and robust against mismatches and manufacturing imprecision in circuit component parameters. Proposed design is scalable to produce training signal for N-bit digital to analog converters. Proposed work is implemented and validated in standard CMOS 180nm technology node with SPICE model for the memristor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可训练忆阻数模转换器的鲁棒训练信号发生器
为了满足高速、准确的数据采集和处理需求,数据转换器需要不断发展。可训练的神经数据转换器可以使用监督学习技术进行训练,以产生精确的数据转换。这种数据转换器具有PVT免疫功能,可以使用片上训练信号发生器进行实时训练。一个可训练的数模转换器需要精确标记的模拟信号作为训练信号。提出了一种cmos -忆阻混合训练信号产生电路和忆阻变斜率斜坡产生电路的设计。该结构具有PVT免疫特性,对电路元件参数的不匹配和制造不精确具有鲁棒性。所提出的设计可扩展到为n位数模转换器产生训练信号。采用SPICE模型在标准CMOS 180nm工艺节点上对所提出的工作进行了实现和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of Self-Controlled Wheelchairs based on Joystick, Gesture Motion and Voice Recognition Dynamic Two Hand Gesture Recognition using CNN-LSTM based networks Performance Assessment of Dual Metal Graded Channel Negative Capacitance Junctionless FET for Digital/Analog field VLSI Architecture of Sigmoid Activation Function for Rapid Prototyping of Machine Learning Applications. Influence of Nanosilica in PVDF Thin Films for Sensing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1