Exploring Generative Adversarial Networks for Photo-to-Anime Image-to-Image Translation: A Comparative Study

Pratamagusta Parawita Muhammad Dharmawan, Chuan-Wang Chang
{"title":"Exploring Generative Adversarial Networks for Photo-to-Anime Image-to-Image Translation: A Comparative Study","authors":"Pratamagusta Parawita Muhammad Dharmawan, Chuan-Wang Chang","doi":"10.1109/IS3C57901.2023.00055","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GAN) is a generative modeling approach with the ability to learn highly complex data. Particularly, they don’t require immediate pairing between the data in input and output domains. This property makes it ideal for image translation tasks. Image translation from photo image into anime style images using GAN is a fast and efficient way to generate art for creative industries. Recently, some algorithms such as U-GAT-IT, CycleGAN, AnimeGAN, and CartoonGAN emerged as few algorithms to accomplish this particular task. The purpose of this paper is to compare the performance of these algorithms in photo-to-anime styled image-to-image translation and discuss the results these algorithms in image-to-image translation task between photo image domain into anime image domain.","PeriodicalId":142483,"journal":{"name":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C57901.2023.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generative Adversarial Networks (GAN) is a generative modeling approach with the ability to learn highly complex data. Particularly, they don’t require immediate pairing between the data in input and output domains. This property makes it ideal for image translation tasks. Image translation from photo image into anime style images using GAN is a fast and efficient way to generate art for creative industries. Recently, some algorithms such as U-GAT-IT, CycleGAN, AnimeGAN, and CartoonGAN emerged as few algorithms to accomplish this particular task. The purpose of this paper is to compare the performance of these algorithms in photo-to-anime styled image-to-image translation and discuss the results these algorithms in image-to-image translation task between photo image domain into anime image domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索生成对抗网络在图像到动画的图像到图像翻译:一个比较研究
生成对抗网络(GAN)是一种生成建模方法,具有学习高度复杂数据的能力。特别是,它们不需要在输入和输出域中的数据之间立即配对。此属性使其成为图像翻译任务的理想选择。使用GAN将照片图像转换为动画风格的图像是一种快速有效的方式,可以为创意产业生成艺术。最近,一些算法如U-GAT-IT、CycleGAN、AnimeGAN和CartoonGAN作为少数算法出现,以完成这一特定任务。本文的目的是比较这些算法在照片到动画样式的图像到图像的翻译中的性能,并讨论这些算法在照片图像域到动画图像域之间的图像到图像的翻译任务中的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of Coordinated Frequency Control Technologies for Wind Turbines, HVDC and Energy Storage Systems Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images A Broadband Millimeter-Wave 5G Low Noise Amplifier Design in 22 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) CMOS Wearable PVDF-TrFE-based Pressure Sensors for Throat Vibrations and Arterial Pulses Monitoring Fast Detection of Fabric Defects based on Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1