Approach to integrated energy harvesting voltage source based on novel active TEG array system

Roman Buzilo, B. Likhterov, R. Giterman, I. Levi, A. Fish, A. Belenky
{"title":"Approach to integrated energy harvesting voltage source based on novel active TEG array system","authors":"Roman Buzilo, B. Likhterov, R. Giterman, I. Levi, A. Fish, A. Belenky","doi":"10.1109/FTFC.2014.6828593","DOIUrl":null,"url":null,"abstract":"This paper presents a new system approach to an on-chip voltage source based on integrated thermoelectric generator (TEG) elements. The proposed architecture employs a novel active TEG array (ATA) system. The ATA system is able to control the TEG's harvested electrical energy, without using a DC/DC integrated converter. This makes it possible to cut power losses due to the non-ideality of the converter efficiency and to reduce the chip area. Commonly, the reduced efficiency of DC/DC converters was compensated for by adding TEG elements, thus enlarging the chip area. The proposed novel approach to designing an energy harvesting integrated voltage source was implemented to support ultra-low power systems for biomedical applications such as wearable wireless body sensors. The voltage source was simulated in a 0.18 μm standard CMOS process, supplying 1.8V±0.18V. The simulation results are presented.","PeriodicalId":138166,"journal":{"name":"2014 IEEE Faible Tension Faible Consommation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Faible Tension Faible Consommation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTFC.2014.6828593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a new system approach to an on-chip voltage source based on integrated thermoelectric generator (TEG) elements. The proposed architecture employs a novel active TEG array (ATA) system. The ATA system is able to control the TEG's harvested electrical energy, without using a DC/DC integrated converter. This makes it possible to cut power losses due to the non-ideality of the converter efficiency and to reduce the chip area. Commonly, the reduced efficiency of DC/DC converters was compensated for by adding TEG elements, thus enlarging the chip area. The proposed novel approach to designing an energy harvesting integrated voltage source was implemented to support ultra-low power systems for biomedical applications such as wearable wireless body sensors. The voltage source was simulated in a 0.18 μm standard CMOS process, supplying 1.8V±0.18V. The simulation results are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于新型有源TEG阵列系统的集成能量收集电压源研究
本文提出了一种基于集成热电发生器(TEG)元件的片上电压源的系统实现方法。该架构采用了一种新型有源TEG阵列(ATA)系统。ATA系统能够控制TEG收集的电能,而无需使用DC/DC集成转换器。这使得它有可能减少功率损失,由于非理想的转换器效率和减少芯片面积。通常,通过增加TEG元件来补偿DC/DC变换器效率的降低,从而扩大芯片面积。提出了一种设计能量收集集成电压源的新方法,用于支持生物医学应用的超低功耗系统,如可穿戴无线身体传感器。电压源采用0.18 μm标准CMOS工艺进行仿真,输出电压为1.8V±0.18 v。给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High efficiency RF energy harvesting with threshold-votlage-adjusted gate control diode Approach to integrated energy harvesting voltage source based on novel active TEG array system A distortion reduction technique for bootstrapped-gate MOS Sample-and-Hold circuits using body-effect compensation Efficiency of the RDVFS countermeasure System level dimensioning of low power biomedical Body Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1