Electric-Field Bit Write-In for Molecular Quantum-Dot Cellular Automata Circuits

Jackson Henry, Joseph Previti, E. Blair
{"title":"Electric-Field Bit Write-In for Molecular Quantum-Dot Cellular Automata Circuits","authors":"Jackson Henry, Joseph Previti, E. Blair","doi":"10.1109/ICRC.2018.8638591","DOIUrl":null,"url":null,"abstract":"Quantum-dot cellular automata (QCA)was conceptualized to provide low-power, high-speed, general-purpose computing in the post-CMOS era. Here, an elementary device, called a “cell” is a system of quantum dots and a few mobile charges. The configuration of charge on a cell encodes a binary state, and cells are networked locally using the electrostatic field. Layouts of QCA cells on a substrate provide non-von-Neumann circuits in which digital logic, interconnections, and memory are intermingled. QCA supports reversible, adiabatic computing for arbitrarily low levels of dissipation. Here, we focus on a molecular implementation of QCA and describe the promise this holds. This discussion includes an outline of an architecture for clocked molecular QCA circuits and some technical challenges remaining before molecular QCA computation may be realized. This work focuses on the challenge of using macroscopic devices to write-in bits to nanoscale QCA molecules. We use an electric field established between electrodes fabricated using standard, mature lithographic processes, and the field need not feature single-molecule specificity. An intercellular Hartree approximation is used to model the state of an $N-$ molecule circuit. Simulations of a method for providing bit inputs to clocked molecular circuits are shown.","PeriodicalId":169413,"journal":{"name":"2018 IEEE International Conference on Rebooting Computing (ICRC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2018.8638591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum-dot cellular automata (QCA)was conceptualized to provide low-power, high-speed, general-purpose computing in the post-CMOS era. Here, an elementary device, called a “cell” is a system of quantum dots and a few mobile charges. The configuration of charge on a cell encodes a binary state, and cells are networked locally using the electrostatic field. Layouts of QCA cells on a substrate provide non-von-Neumann circuits in which digital logic, interconnections, and memory are intermingled. QCA supports reversible, adiabatic computing for arbitrarily low levels of dissipation. Here, we focus on a molecular implementation of QCA and describe the promise this holds. This discussion includes an outline of an architecture for clocked molecular QCA circuits and some technical challenges remaining before molecular QCA computation may be realized. This work focuses on the challenge of using macroscopic devices to write-in bits to nanoscale QCA molecules. We use an electric field established between electrodes fabricated using standard, mature lithographic processes, and the field need not feature single-molecule specificity. An intercellular Hartree approximation is used to model the state of an $N-$ molecule circuit. Simulations of a method for providing bit inputs to clocked molecular circuits are shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子量子点元胞自动机电路的电场位写入
量子点元胞自动机(QCA)的概念是在后cmos时代提供低功耗,高速,通用的计算。这里,一个叫做“细胞”的基本装置是由量子点和一些移动电荷组成的系统。细胞上的电荷结构编码了二进制状态,细胞利用静电场在局部联网。QCA单元在衬底上的布局提供了非非诺伊曼电路,其中数字逻辑,互连和存储器混合在一起。QCA支持可逆,绝热计算任意低水平的耗散。在这里,我们专注于QCA的分子实现,并描述了它的前景。本讨论包括一个分子时钟QCA电路的架构大纲,以及在分子QCA计算可能实现之前存在的一些技术挑战。这项工作的重点是使用宏观设备将比特写入纳米级QCA分子的挑战。我们使用标准的、成熟的光刻工艺制造的电极之间建立的电场,并且电场不需要具有单分子特异性。细胞间哈特里近似用于模拟N-$分子电路的状态。模拟一种方法提供位输入时钟分子电路显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Merge Network for a Non-Von Neumann Accumulate Accelerator in a 3D Chip SC-SD: Towards Low Power Stochastic Computing Using Sigma Delta Streams ICRC 2018 Presented Posters Electric-Field Bit Write-In for Molecular Quantum-Dot Cellular Automata Circuits Thermodynamic Intelligence, a Heretical Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1