Pedigree-ing Your Big Data: Data-Driven Big Data Privacy in Distributed Environments

A. Cuzzocrea, E. Damiani
{"title":"Pedigree-ing Your Big Data: Data-Driven Big Data Privacy in Distributed Environments","authors":"A. Cuzzocrea, E. Damiani","doi":"10.1109/CCGRID.2018.00100","DOIUrl":null,"url":null,"abstract":"This paper introduces a general framework for supporting data-driven privacy-preserving big data management in distributed environments, such as emerging Cloud settings. The proposed framework can be viewed as an alternative to classical approaches where the privacy of big data is ensured via security-inspired protocols that check several (protocol) layers in order to achieve the desired privacy. Unfortunately, this injects considerable computational overheads in the overall process, thus introducing relevant challenges to be considered. Our approach instead tries to recognize the \"pedigree\" of suitable summary data representatives computed on top of the target big data repositories, hence avoiding computational overheads due to protocol checking. We also provide a relevant realization of the framework above, the so-called Data-dRIven aggregate-PROvenance privacypreserving big Multidimensional data (DRIPROM) framework, which specifically considers multidimensional data as the case of interest.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper introduces a general framework for supporting data-driven privacy-preserving big data management in distributed environments, such as emerging Cloud settings. The proposed framework can be viewed as an alternative to classical approaches where the privacy of big data is ensured via security-inspired protocols that check several (protocol) layers in order to achieve the desired privacy. Unfortunately, this injects considerable computational overheads in the overall process, thus introducing relevant challenges to be considered. Our approach instead tries to recognize the "pedigree" of suitable summary data representatives computed on top of the target big data repositories, hence avoiding computational overheads due to protocol checking. We also provide a relevant realization of the framework above, the so-called Data-dRIven aggregate-PROvenance privacypreserving big Multidimensional data (DRIPROM) framework, which specifically considers multidimensional data as the case of interest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据谱系:分布式环境中数据驱动的大数据隐私
本文介绍了一个通用框架,用于支持分布式环境(如新兴的云环境)中数据驱动的隐私保护大数据管理。所提出的框架可以被视为经典方法的替代方案,其中通过安全启发的协议来确保大数据的隐私,该协议检查多个(协议)层,以实现所需的隐私。不幸的是,这在整个过程中注入了相当大的计算开销,因此引入了需要考虑的相关挑战。相反,我们的方法试图识别在目标大数据存储库之上计算的合适汇总数据代表的“谱系”,从而避免了由于协议检查而产生的计算开销。我们还提供了上述框架的相关实现,即所谓的数据驱动聚合-来源隐私保护大多维数据(DRIPROM)框架,该框架特别考虑了多维数据作为感兴趣的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1