A neural network model for analyzing vibration waveform of impact sound

K. Hosoya, T. Ogawa, H. Kanada, K. Mori
{"title":"A neural network model for analyzing vibration waveform of impact sound","authors":"K. Hosoya, T. Ogawa, H. Kanada, K. Mori","doi":"10.1109/ICONIP.2002.1198178","DOIUrl":null,"url":null,"abstract":"The method to estimate the feature of the material by the impact sound was proposed ((M. Sakata and H. Ohnabe, 1994). To design the structure of composites taking into account the characteristic of the ceramics, a method was proposed to obtain the elastic moduli and the dumping ratio from the vibration of the material. To estimate their parameters, it is necessary to model the vibration precisely. In previous work, the vibration is analyzed by the fast Fourier transforms. On the other hand, the artificial neural network has been used to model the signal source, recently. The multilayer neural network adaptively models the signal source by error backpropagation. We propose a new neural network model for vibrational analysis of the material. We examined the model by the vibration waveform of actual ceramics composite. Also, the waveform at the high temperature is analyzed from the impact sound waveform of room temperature.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The method to estimate the feature of the material by the impact sound was proposed ((M. Sakata and H. Ohnabe, 1994). To design the structure of composites taking into account the characteristic of the ceramics, a method was proposed to obtain the elastic moduli and the dumping ratio from the vibration of the material. To estimate their parameters, it is necessary to model the vibration precisely. In previous work, the vibration is analyzed by the fast Fourier transforms. On the other hand, the artificial neural network has been used to model the signal source, recently. The multilayer neural network adaptively models the signal source by error backpropagation. We propose a new neural network model for vibrational analysis of the material. We examined the model by the vibration waveform of actual ceramics composite. Also, the waveform at the high temperature is analyzed from the impact sound waveform of room temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种分析冲击声振动波形的神经网络模型
提出了用撞击声估计材料特性的方法(M. Sakata and H. Ohnabe, 1994)。为了设计考虑陶瓷特性的复合材料结构,提出了一种从材料振动中获得弹性模量和倾倒比的方法。为了估计它们的参数,必须精确地建立振动模型。在以前的工作中,用快速傅里叶变换来分析振动。另一方面,近年来人工神经网络已被用于信号源的建模。多层神经网络通过误差反向传播对信号源进行自适应建模。我们提出了一种新的用于材料振动分析的神经网络模型。用实际陶瓷复合材料的振动波形对模型进行了验证。并从常温下的冲击声波形出发,分析了高温下的冲击声波形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1