Advanced Outlier Detection Using Unsupervised Learning for Screening Potential Customer Returns

Hanbin Hu, Nguyen Nguyen, Chen He, Peng Li
{"title":"Advanced Outlier Detection Using Unsupervised Learning for Screening Potential Customer Returns","authors":"Hanbin Hu, Nguyen Nguyen, Chen He, Peng Li","doi":"10.1109/ITC44778.2020.9325225","DOIUrl":null,"url":null,"abstract":"Due to the extreme scarcity of customer failure data, it is challenging to reliably screen out those rare defects within a high-dimensional input feature space formed by the relevant parametric test measurements. In this paper, we study several unsupervised learning techniques based on six industrial test datasets, and propose to train a more robust unsupervised learning model by self-labeling the training data via a set of transformations. Using the labeled data we train a multi-class classifier through supervised training. The goodness of the multiclass classification decisions with respect to an unseen input data is used as a normality score to defect anomalies. Furthermore, we propose to use reversible information lossless transformations to retain the data information and boost the performance and robustness of the proposed self-labeling approach.","PeriodicalId":251504,"journal":{"name":"2020 IEEE International Test Conference (ITC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC44778.2020.9325225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Due to the extreme scarcity of customer failure data, it is challenging to reliably screen out those rare defects within a high-dimensional input feature space formed by the relevant parametric test measurements. In this paper, we study several unsupervised learning techniques based on six industrial test datasets, and propose to train a more robust unsupervised learning model by self-labeling the training data via a set of transformations. Using the labeled data we train a multi-class classifier through supervised training. The goodness of the multiclass classification decisions with respect to an unseen input data is used as a normality score to defect anomalies. Furthermore, we propose to use reversible information lossless transformations to retain the data information and boost the performance and robustness of the proposed self-labeling approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用无监督学习筛选潜在客户回报的高级异常值检测
由于客户故障数据的极度稀缺,在相关参数测试测量形成的高维输入特征空间中可靠地筛选出那些罕见的缺陷是一项挑战。本文研究了基于6个工业测试数据集的几种无监督学习技术,并提出通过一组变换对训练数据进行自标记,从而训练出更鲁棒的无监督学习模型。使用标记数据,我们通过监督训练训练一个多类分类器。多类分类决策相对于未知输入数据的优度被用作缺陷异常的正态性评分。此外,我们建议使用可逆信息无损变换来保留数据信息,提高所提出的自标记方法的性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Accuracy of Wideband Power Amplifiers with Memory effects via Measurements Automated Assertion Generation from Natural Language Specifications Characterization, Modeling and Test of Synthetic Anti-Ferromagnet Flip Defect in STT-MRAMs Fast Bring-Up of an AI SoC through IEEE 1687 Integrating Embedded TAPs and IEEE 1500 Interfaces Methods for Susceptibility Analysis of Logic Gates in the Presence of Single Event Transients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1