A novel method for determining the degree of hydrogen loading of LOHC using cavity based permittivity measurements

Nico Weiss, Alexander Koelpin, Irina Wiemann, Eberhard Schluecker
{"title":"A novel method for determining the degree of hydrogen loading of LOHC using cavity based permittivity measurements","authors":"Nico Weiss, Alexander Koelpin, Irina Wiemann, Eberhard Schluecker","doi":"10.1109/WiSNeT56959.2023.10046227","DOIUrl":null,"url":null,"abstract":"Liquid organic hydrogen carriers are a promising candidate to reduce the risk of handling hydrogen. However, the determination of their hydrogenation is still the subject of research. In this paper, a novel method for measuring hydrogen loading based on the permittivity of the hydrogen carriers used is presented. The cavity resonator developed for this application is shown and the design decisions made as well as the processing required are explained. Finally, the results of the test measurements are presented and discussed.","PeriodicalId":186233,"journal":{"name":"2023 IEEE Topical Conference on Wireless Sensors and Sensor Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Topical Conference on Wireless Sensors and Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiSNeT56959.2023.10046227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid organic hydrogen carriers are a promising candidate to reduce the risk of handling hydrogen. However, the determination of their hydrogenation is still the subject of research. In this paper, a novel method for measuring hydrogen loading based on the permittivity of the hydrogen carriers used is presented. The cavity resonator developed for this application is shown and the design decisions made as well as the processing required are explained. Finally, the results of the test measurements are presented and discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于空腔介电常数测量确定LOHC载氢程度的新方法
液态有机氢载体是降低氢处理风险的一个有前途的候选者。然而,它们加氢的测定仍是研究的课题。本文提出了一种基于载氢材料介电常数测量载氢量的新方法。展示了为此应用开发的腔谐振器,并解释了所做的设计决策以及所需的处理。最后,给出了试验测量结果并进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2D Imaging of a Drone Using a Millimeter-Wave Fast Chirp MIMO Radar Based on Khatri-Rao Product Virtual Array Processing Indoor Wireless Localization of Uncooperative Sources Using a Ray Tracing Model A novel method for determining the degree of hydrogen loading of LOHC using cavity based permittivity measurements Full Polarimetric Antenna System for Automotive Radar A Wireless Lightweight System Node for Energy Efficient Beehive Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1