Towards the Data-driven System for Rhetorical Parsing of Russian Texts

Artem Shelmanov, D. Pisarevskaya, Elena Chistova, S. Toldova, M. Kobozeva, I. Smirnov
{"title":"Towards the Data-driven System for Rhetorical Parsing of Russian Texts","authors":"Artem Shelmanov, D. Pisarevskaya, Elena Chistova, S. Toldova, M. Kobozeva, I. Smirnov","doi":"10.18653/v1/W19-2711","DOIUrl":null,"url":null,"abstract":"Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 ± 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.","PeriodicalId":243254,"journal":{"name":"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Discourse Relation Parsing and Treebanking 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-2711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 ± 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
俄语文本修辞分析的数据驱动系统研究
介绍了在Ru-RSTreebank上训练的机器学习模型的第一次实验评估结果-第一个在RST框架内注释的俄语语料库。使用了各种词汇、数量、形态和语义特征。在修辞关系分类中,选择特征的CatBoost模型与线性支持向量机模型的集成得分最高(宏观F1 = 54.67±0.38)。我们发现,大多数修辞关系分类的重要特征都与来自俄语连接词词典和其他来源的话语连接词有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards the Data-driven System for Rhetorical Parsing of Russian Texts Nuclearity in RST and signals of coherence relations ToNy: Contextual embeddings for accurate multilingual discourse segmentation of full documents Toward Cross-theory Discourse Relation Annotation Towards discourse annotation and sentiment analysis of the Basque Opinion Corpus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1