Stephen Y. Chen, Antonio Bolufé-Röhler, James Montgomery, Dania Tamayo-Vera, T. Hendtlass
{"title":"Measuring the Effects of Increasing Dimensionality on Fitness-Based Selection and Failed Exploration","authors":"Stephen Y. Chen, Antonio Bolufé-Röhler, James Montgomery, Dania Tamayo-Vera, T. Hendtlass","doi":"10.1109/CEC55065.2022.9870409","DOIUrl":null,"url":null,"abstract":"The rate of Successful Exploration is related to the proportion of search solutions from fitter attraction basins that are fitter than the current reference solution. A reference solution that moves closer to its local optimum (i.e. experiences exploitation) will reduce the proportion of these fitter solutions, and this can lead to decreased rates of Successful Exploration/increased rates of Failed Exploration. This effect of Fitness-Based Selection is studied in Particle Swarm Optimization and Differential Evolution with increasing dimensionality of the search space. It is shown that increasing rates of Failed Exploration represent another aspect of the Curse of Dimensionality that needs to be addressed by metaheuristic design.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The rate of Successful Exploration is related to the proportion of search solutions from fitter attraction basins that are fitter than the current reference solution. A reference solution that moves closer to its local optimum (i.e. experiences exploitation) will reduce the proportion of these fitter solutions, and this can lead to decreased rates of Successful Exploration/increased rates of Failed Exploration. This effect of Fitness-Based Selection is studied in Particle Swarm Optimization and Differential Evolution with increasing dimensionality of the search space. It is shown that increasing rates of Failed Exploration represent another aspect of the Curse of Dimensionality that needs to be addressed by metaheuristic design.