SURF applied in panorama image stitching

Luo Juan, O. Gwun
{"title":"SURF applied in panorama image stitching","authors":"Luo Juan, O. Gwun","doi":"10.1109/IPTA.2010.5586723","DOIUrl":null,"url":null,"abstract":"SURF (Speeded Up Robust Features) is one of the famous feature-detection algorithms. This paper proposes a panorama image stitching system which combines an image matching algorithm; modified SURF and an image blending algorithm; multi-band blending. The process is divided in the following steps: first, get feature descriptor of the image using modified SURF; secondly, find matching pairs, check the neighbors by K-NN (K-nearest neighbor), and remove the mismatch couples by RANSAC(Random Sample Consensus); then, adjust the images by bundle adjustment and estimate the accurate homography matrix; lastly, blend images by multi-band blending. Also, comparison of SIFT (Scale Invariant Feature Transform) and modified SURF are also shown as a base of selection of image matching algorithm. According to the experiments, the present system can make the stitching seam invisible and get a perfect panorama for large image data and it is faster than previous method.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

SURF (Speeded Up Robust Features) is one of the famous feature-detection algorithms. This paper proposes a panorama image stitching system which combines an image matching algorithm; modified SURF and an image blending algorithm; multi-band blending. The process is divided in the following steps: first, get feature descriptor of the image using modified SURF; secondly, find matching pairs, check the neighbors by K-NN (K-nearest neighbor), and remove the mismatch couples by RANSAC(Random Sample Consensus); then, adjust the images by bundle adjustment and estimate the accurate homography matrix; lastly, blend images by multi-band blending. Also, comparison of SIFT (Scale Invariant Feature Transform) and modified SURF are also shown as a base of selection of image matching algorithm. According to the experiments, the present system can make the stitching seam invisible and get a perfect panorama for large image data and it is faster than previous method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SURF应用于全景图像拼接
SURF (accelerated Robust Features,加速鲁棒特征)是一种著名的特征检测算法。本文提出了一种结合图像匹配算法的全景图像拼接系统;改进SURF和图像混合算法;多波段融合。该过程分为以下几个步骤:首先,利用改进的SURF获取图像的特征描述符;其次,寻找匹配对,用K-NN (k -近邻)检查邻居,用RANSAC(随机样本一致性)去除不匹配对;然后,通过束平差对图像进行调整,估计出精确的单应性矩阵;最后,采用多波段混合的方法对图像进行混合。并对SIFT (Scale Invariant Feature Transform)和改进SURF进行了比较,作为图像匹配算法选择的依据。实验结果表明,该方法可以实现拼接缝的不可见性,并能获得较好的大图像数据全景图,且速度比以前的方法快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Audio-video surveillance system for public transportation Bayesian regularized nonnegative matrix factorization based face features learning Co-parent selection for fast region merging in pyramidal image segmentation Temporal error concealment algorithm for H.264/AVC using omnidirectional motion similarity Measurement of laboratory fire spread experiments by stereovision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1