Multi-Plane Image Video Compression

Scott Janus, J. Boyce, S. Bhatia, J. Tanner, Atul Divekar, Penne Lee
{"title":"Multi-Plane Image Video Compression","authors":"Scott Janus, J. Boyce, S. Bhatia, J. Tanner, Atul Divekar, Penne Lee","doi":"10.1109/MMSP48831.2020.9287083","DOIUrl":null,"url":null,"abstract":"Multiplane Images (MPI) is a new approach for storing volumetric content. MPI represents a 3D scene within a view frustum with typically 32 planes of texture and transparency information per camera. MPI literature to date has been focused on still images but applying MPI to video will require substantial compression in order to be viable for real world productions. In this paper, we describe several techniques for compressing MPI video sequences by reducing pixel rate while maintaining acceptable visual quality. We focus on using traditional video compression codecs such as HEVC. While certainly a new codec algorithm specifically tailored to MPI would likely achieve very good results, no such devices exist today that support this hypothetical MPI codec. By comparison, hundreds of millions of real-time HEVC decoders are present in laptops and TVs today.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiplane Images (MPI) is a new approach for storing volumetric content. MPI represents a 3D scene within a view frustum with typically 32 planes of texture and transparency information per camera. MPI literature to date has been focused on still images but applying MPI to video will require substantial compression in order to be viable for real world productions. In this paper, we describe several techniques for compressing MPI video sequences by reducing pixel rate while maintaining acceptable visual quality. We focus on using traditional video compression codecs such as HEVC. While certainly a new codec algorithm specifically tailored to MPI would likely achieve very good results, no such devices exist today that support this hypothetical MPI codec. By comparison, hundreds of millions of real-time HEVC decoders are present in laptops and TVs today.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多平面图像视频压缩
多平面图像(MPI)是一种存储体积内容的新方法。MPI代表一个视域内的3D场景,每个相机通常有32个纹理平面和透明度信息。迄今为止,MPI文献主要集中在静态图像上,但将MPI应用于视频将需要大量压缩,以便在现实世界的制作中可行。在本文中,我们描述了几种通过降低像素率同时保持可接受的视觉质量来压缩MPI视频序列的技术。我们专注于使用传统的视频压缩编解码器,如HEVC。当然,专门为MPI量身定制的新编解码器算法可能会取得非常好的效果,但目前还没有这样的设备支持这种假设的MPI编解码器。相比之下,数以亿计的实时HEVC解码器目前存在于笔记本电脑和电视中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Active Perception for Improving Embedding-based Deep Face Recognition Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality The Suitability of Texture Vibrations Based on Visually Perceived Virtual Textures in Bimodal and Trimodal Conditions DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1