{"title":"Detection of Different Structural Proteins Using Solid-state Nanopores","authors":"Lichun Zou, Peifu Bian, Haiyan Wang, Jingjie Sha","doi":"10.1109/NEMS57332.2023.10190955","DOIUrl":null,"url":null,"abstract":"As a crucial biomolecule of life, protein has diverse three-dimensional structural and functional properties, typically with various $\\alpha$-helix and $\\beta$-fold ratios. Its structure in living organisms provides important information for the study of normal or pathological physiological processes. And the nanopore technology, as a novel single-molecule sensor, has been used extensively in protein molecular detection and structural identification, because of its advantages such as label-free and easy operation. Here, we use solid-state nanopores to detect two kinds of structural proteins. The results show that since different proteins cause different blocking current signals when passing through solid-state nanopores, so we confirmed that solid-state nanopores enable protein characterization and the $\\beta$-fold-rich proteins have more structural possibilities.","PeriodicalId":142575,"journal":{"name":"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS57332.2023.10190955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As a crucial biomolecule of life, protein has diverse three-dimensional structural and functional properties, typically with various $\alpha$-helix and $\beta$-fold ratios. Its structure in living organisms provides important information for the study of normal or pathological physiological processes. And the nanopore technology, as a novel single-molecule sensor, has been used extensively in protein molecular detection and structural identification, because of its advantages such as label-free and easy operation. Here, we use solid-state nanopores to detect two kinds of structural proteins. The results show that since different proteins cause different blocking current signals when passing through solid-state nanopores, so we confirmed that solid-state nanopores enable protein characterization and the $\beta$-fold-rich proteins have more structural possibilities.