{"title":"Fast computation with memory circuit elements","authors":"M. Ventra, Y. Pershin","doi":"10.1109/CNNA.2012.6331429","DOIUrl":null,"url":null,"abstract":"Memory circuit elements - resistors, capacitors and inductors with memory - are electronic components with great potential in a wide range of applications. In particular, they are ideally suited to enhance all three major computing paradigms: binary, analog and quantum. Here, we consider how to achieve a faster computation with these elements. Specifically, we will show that a binary logic architecture combining memristive and memcapacitive elements requires considerably less steps to process information compared to architectures employing only memristive elements. In addition, we demonstrate that a network of memristive - as well as memcapacitive or meminductive - systems can solve a complex optimization problem - the maze problem - with unprecedented speed due to the analog parallelism afforded by these elements.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Memory circuit elements - resistors, capacitors and inductors with memory - are electronic components with great potential in a wide range of applications. In particular, they are ideally suited to enhance all three major computing paradigms: binary, analog and quantum. Here, we consider how to achieve a faster computation with these elements. Specifically, we will show that a binary logic architecture combining memristive and memcapacitive elements requires considerably less steps to process information compared to architectures employing only memristive elements. In addition, we demonstrate that a network of memristive - as well as memcapacitive or meminductive - systems can solve a complex optimization problem - the maze problem - with unprecedented speed due to the analog parallelism afforded by these elements.